Missing feature theory and probabilistic estimation of the clean components for robust speech recognition

Keywords: LTS1 Reference LTS-CONF-1999-048 Record created on 2006-06-14, modified on 2016-08-08

[1]  Richard Lippmann,et al.  Using missing feature theory to actively select features for robust speech recognition with interruptions, filtering and noise KN-37 , 1997, EUROSPEECH.

[2]  Andrzej Drygajlo,et al.  Rehaussement par soustraction spectrale et compensation des parametres manquants pour la reconnaissance robuste du locuteur et de la parole , 1998 .

[3]  Mark J. F. Gales,et al.  Model-based techniques for noise robust speech recognition , 1995 .

[4]  Richard M. Schwartz,et al.  Enhancement of speech corrupted by acoustic noise , 1979, ICASSP.

[5]  Mitch Weintraub,et al.  Filterbank-energy estimation using mixture and Markov models for recognition of noisy speech , 1993, IEEE Trans. Speech Audio Process..

[6]  Jérôme Boudy,et al.  Experiments with a nonlinear spectral subtractor (NSS), Hidden Markov models and the projection, for robust speech recognition in cars , 1991, Speech Commun..

[7]  Phil D. Green,et al.  Missing data techniques for robust speech recognition , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  Phil D. Green,et al.  Some solution to the missing feature problem in data classification, with application to noise robust ASR , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[9]  A. Drygajlo,et al.  Use of Generalized Spectral Subtraction and Missing Feature Compensation for Robust Speaker Verification , 1998 .

[10]  Phil D. Green,et al.  Handling missing data in speech recognition , 1994, ICSLP.

[11]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[12]  S. Boll,et al.  Suppression of acoustic noise in speech using spectral subtraction , 1979 .