A Ka-Band Switchable LNA With 2.4-dB NF Employing a Varactor-Based Tunable Network

This letter presents a multiband switchable low-noise amplifier (LNA) in the 0.1-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> GaAs pHEMT process. Employing a new varactor-based tunable network as the interstage matching circuit, the operation bands can be tuned consecutively and cover the 5G millimeter-wave frequency bands N257/N260. The proposed tunable structure functions well without sacrificing noise performance or increasing dc consumption and chip area. In the entire operation band from 26.5 to 41 GHz, the LNA achieves a small-signal gain of over 24 dB and a noise figure (NF) of less than 2.9 dB. The measured result shows a small-signal gain of 25.1 dB/27.7 dB and an NF of 2.4 dB/2.8 dB at 28 GHz/39 GHz. The measured input 1-dB compression point (IP<sub>1dB</sub>) is −18.3 dBm/−17 dBm at 28 GHz/39 GHz. The measured input-referred intercept point (IIP<sub>3</sub>) is −8.8 dBm/−8.5 dBm at 28 GHz/39 GHz. The LNA has a chip size of 1.6 mm <inline-formula> <tex-math notation="LaTeX">$\times 1$ </tex-math></inline-formula> mm, and the total power consumption is 74 mW. To the best of our knowledge, the proposed LNA is the state-of-the-art <italic>Ka</italic>-band switchable LNA and has similar performance compared with single-band LNAs using the same technology.

[1]  Mau-Chung Frank Chang,et al.  A Tri (K/Ka/V)-Band Monolithic CMOS Low Noise Amplifier with Shared Signal Path and Variable Gains , 2020, 2020 IEEE/MTT-S International Microwave Symposium (IMS).

[2]  Xiaohu You,et al.  A 20-GHz 1.9-mW LNA Using gm-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications , 2020, IEEE Journal of Solid-State Circuits.

[3]  John R. Long,et al.  A 1.7-dB Minimum NF, 22–32-GHz Low-Noise Feedback Amplifier With Multistage Noise Matching in 22-nm FD-SOI CMOS , 2020, IEEE Journal of Solid-State Circuits.

[4]  Cheng Tan,et al.  An X/Ku Dual-Band Switch-Free Reconfigurable GaAs LNA MMIC Based on Coupled Line , 2020, IEEE Access.

[5]  W. Hong,et al.  A Dual-Band Switchable MMIC Star Mixer , 2019, IEEE Microwave and Wireless Components Letters.

[6]  J. Albrecht,et al.  A Ka/V Band-Switchable LNA With 2.8/3.4 dB Noise Figure , 2019, IEEE Microwave and Wireless Components Letters.

[7]  W. Hong,et al.  A Q-Band Self-Biased LNA in 0.1-μm GaAs pHEMT Technology , 2019, 2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT).

[8]  Gabriel M. Rebeiz,et al.  A 24-43 GHz LNA with 3.1-3.7 dB Noise Figure and Embedded 3-Pole Elliptic High-Pass Response for 5G Applications in 22 nm FDSOI , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[9]  A. Bellaouar,et al.  A Low Noise Figure 28GHz LNA in 22nm FDSOI Technology , 2019, 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[10]  Gabriel M. Rebeiz,et al.  A 12.5 mW Packaged K-Band CMOS SOI LNA with 1.5 dB NF , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[11]  V. Issakov,et al.  A Low-Power Triple-Loop Feedback Broadband LNA in a 130 nm SiGe BiCMOS Technology , 2018, 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS).

[12]  V. Issakov,et al.  A 6 kV ESD-Protected Low-Power 24 GHz LNA for Radar Applications in SiGe BiCMOS , 2018, 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS).

[13]  Zhenghe Feng,et al.  An Energy-Efficient $Ka$ / $Q$ Dual-Band Power Amplifier MMIC in 0.1- $\mu$ m GaAs Process , 2018 .

[14]  Cam Nguyen,et al.  A $K\text{-}/Ka$ -Band Concurrent Dual-Band Single-Ended Input to Differential Output Low-Noise Amplifier Employing a Novel Transformer Feedback Dual-Band Load , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Bin Li,et al.  A Reconfigurable Low Noise Amplifier for X/Ku Band , 2018, 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT).

[16]  Panglijen Candra,et al.  SiGe HBT X-band and Ka-band switchable dual-band low noise amplifier , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[17]  Cam Nguyen,et al.  A Concurrent Tri-Band Low-Noise Amplifier With a Novel Tri-Band Load Resonator Employing Feedback Notches , 2013, IEEE Transactions on Microwave Theory and Techniques.

[18]  Chau-Ching Chiong,et al.  An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[19]  Hsien-Shun Wu,et al.  A Dual-Band 10/24-GHz Amplifier Design Incorporating Dual-Frequency Complex Load Matching , 2012, IEEE Transactions on Microwave Theory and Techniques.

[20]  P. Heydari,et al.  A Single-Chip Dual-Band 22–29-GHz/77–81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE Journal of Solid-State Circuits.

[21]  Hyundong Shin,et al.  8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application , 2008 .

[22]  Hossein Hashemi,et al.  Concurrent multiband low-noise amplifiers-theory, design, and applications , 2002 .