A high electromechanical coupling coefficient SH0 Lamb wave lithium niobate micromechanical resonator and a method for fabrication
暂无分享,去创建一个
Janet Nguyen | Michael S. Baker | Todd Bauer | Roy H. Olsson | Darren W. Branch | Blythe Clark | Khalid Hattar | Matt Eichenfield | Blythe G. Clark | Thomas A. Friedmann | D. Branch | R. Olsson | T. Friedmann | M. Eichenfield | T. Bauer | M. Baker | K. Hattar | Michael Wiwi | Sara Jensen Homeijer | J. Nguyen | S. J. Homeijer | M. Wiwi | M. Eichenfield
[1] Kenneth Meade Lakin,et al. A review of thin-film resonator technology , 2003 .
[2] D. Weinstein,et al. Internal Dielectric Transduction in Bulk-Mode Resonators , 2009, Journal of Microelectromechanical Systems.
[3] S. Bedair,et al. Piezoelectric PZT MEMS technologies for small-scale robotics and RF applications , 2012 .
[4] Lamb Waves and Resonant Modes in Rectangular-Bar Silicon Resonators , 2010, Journal of Microelectromechanical Systems.
[5] Yueh-Chung Yu,et al. Crystal–ion-slicing lithium niobate film performed by 250 keV 4He ion implantation , 2007 .
[6] S. Joshi,et al. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[7] A. Pisano,et al. Single-Chip Multiple-Frequency ALN MEMS Filters Based on Contour-Mode Piezoelectric Resonators , 2007, Journal of Microelectromechanical Systems.
[8] A. Bettiol,et al. Suspended slab and photonic crystal waveguides in lithium niobate , 2010 .
[9] C. Nguyen. MEMS technology for timing and frequency control , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[10] Songbin Gong,et al. Design and Analysis of Lithium–Niobate-Based High Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering , 2013, IEEE Transactions on Microwave Theory and Techniques.
[11] F. Ayazi,et al. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[12] K. Gupta,et al. Microstrip Lines and Slotlines , 1979 .
[13] C. Campbell. Applications of surface acoustic and shallow bulk acoustic wave devices , 1989, Proc. IEEE.
[14] Gianluca Piazza,et al. Piezoelectric aluminum nitride thin films for microelectromechanical systems , 2012 .
[15] C. Maillot,et al. Thermal nitridation of silicon: An XPS and LEED investigation , 1984 .
[16] M. Esashi,et al. Etch rate dependence on crystal orientation of lithium niobate , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[17] M. Kadota. Development of Substrate Structures and Processes for Practical Applications of Various Surface Acoustic Wave Devices , 2005 .
[18] Roy H. Olsson,et al. AlN Microresonator-Based Filters With Multiple Bandwidths at Low Intermediate Frequencies , 2013, Journal of Microelectromechanical Systems.
[19] C. Mazure,et al. High piezoelectric properties in LiNbO3 transferred layer by the Smart Cut™ technology for ultra wide band BAW filter applications , 2008, 2008 IEEE International Electron Devices Meeting.
[20] F. Schrempel,et al. Etching of Ion Irradiated LiNbO3 in Aqueous Hydrofluoric Solutions , 2008 .
[21] Y. Oshmyansky,et al. PCS 1900 MHz duplexer using thin film bulk acoustic resonators (FBARs) , 1999 .
[22] B. Ghyselen,et al. The generic nature of the Smart-Cut® process for thin film transfer , 2001 .
[23] A. Pisano,et al. Temperature-compensated aluminum nitride lamb wave resonators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.