Robust residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems

We consider mixed finite element approximation of a singularly perturbed fourth-order elliptic problem with two different boundary conditions, and present a new measure of the error, whose components are balanced with respect to the perturbation parameter. Robust residual-based a posteriori estimators for the new measure are obtained, which are achieved via a novel analytical technique based on an approximation result. Numerical examples are presented to validate our theory.

[1]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[2]  W. Marsden I and J , 2012 .

[3]  R. S. Falk,et al.  Error estimates for mixed methods , 1980 .

[4]  Zhang,et al.  A POSTERIORI ESTIMATOR OF NONCONFORMING FINITE ELEMENT METHOD FOR FOURTH ORDER ELLIPTIC PERTURBATION PROBLEMS , 2008 .

[5]  Gerard Awanou Robustness of a Spline Element Method with Constraints , 2008, J. Sci. Comput..

[6]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[7]  G. Fix Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .

[8]  Long Chen,et al.  Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..

[9]  Natalia Kopteva,et al.  Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems , 2015, Numerische Mathematik.

[10]  S. C. Brenner,et al.  An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem , 2010 .

[11]  Jun Hu,et al.  A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.

[12]  Runchang Lin,et al.  A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems , 2012, SIAM J. Numer. Anal..

[13]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[14]  Dietrich Braess,et al.  A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .

[15]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[16]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[17]  J. Guzmán,et al.  A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem , 2012 .

[18]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[19]  Houde Han,et al.  An equation decomposition method for the numerical solution of a fourth‐order elliptic singular perturbation problem , 2012 .

[20]  Xiaoping Xie,et al.  Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations , 2013, 1312.6685.

[21]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[22]  Carsten Carstensen,et al.  An optimal adaptive mixed finite element method , 2011, Math. Comput..

[23]  Amiya K. Pani,et al.  Mixed finite element methods for a fourth order reaction diffusion equation , 2012 .

[24]  Kokou B. Dossou,et al.  A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem , 1997 .

[25]  Sheng Zhang,et al.  Invalidity of decoupling a biharmonic equation of two Poisson equations of non-convex polygons , 2008 .