Robust residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
暂无分享,去创建一个
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] W. Marsden. I and J , 2012 .
[3] R. S. Falk,et al. Error estimates for mixed methods , 1980 .
[4] Zhang,et al. A POSTERIORI ESTIMATOR OF NONCONFORMING FINITE ELEMENT METHOD FOR FOURTH ORDER ELLIPTIC PERTURBATION PROBLEMS , 2008 .
[5] Gerard Awanou. Robustness of a Spline Element Method with Constraints , 2008, J. Sci. Comput..
[6] I. Babuska,et al. Analysis of mixed methods using mesh dependent norms , 1980 .
[7] G. Fix. Review: Philippe G. Ciarlet, The finite element method for elliptic problems , 1979 .
[8] Long Chen,et al. Convergence and optimality of adaptive mixed finite element methods , 2010, Math. Comput..
[9] Natalia Kopteva,et al. Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction-diffusion problems , 2015, Numerische Mathematik.
[10] S. C. Brenner,et al. An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem , 2010 .
[11] Jun Hu,et al. A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.
[12] Runchang Lin,et al. A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems , 2012, SIAM J. Numer. Anal..
[13] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[14] Dietrich Braess,et al. A Posteriori Error Estimators for the Raviart--Thomas Element , 1996 .
[15] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[16] Rüdiger Verfürth. A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.
[17] J. Guzmán,et al. A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem , 2012 .
[18] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[19] Houde Han,et al. An equation decomposition method for the numerical solution of a fourth‐order elliptic singular perturbation problem , 2012 .
[20] Xiaoping Xie,et al. Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations , 2013, 1312.6685.
[21] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[22] Carsten Carstensen,et al. An optimal adaptive mixed finite element method , 2011, Math. Comput..
[23] Amiya K. Pani,et al. Mixed finite element methods for a fourth order reaction diffusion equation , 2012 .
[24] Kokou B. Dossou,et al. A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem , 1997 .
[25] Sheng Zhang,et al. Invalidity of decoupling a biharmonic equation of two Poisson equations of non-convex polygons , 2008 .