Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system
暂无分享,去创建一个
Thomas Kalscheuer | Jared Peacock | Marina Rosas-Carbajal | Stephan Thiel | S. Thiel | T. Kalscheuer | F. Zyserman | N. Linde | M. Rosas‐Carbajal | Nicolas Linde | F. I. Zyserman | J. Peacock | M. Rosas-Carbajal
[1] K. Bahr. Percolation in the crust derived from distortion of electric fields , 2000 .
[2] Michel Campillo,et al. 3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations , 2007 .
[3] Michel Roussignol,et al. Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .
[4] Michel Campillo,et al. Towards forecasting volcanic eruptions using seismic noise , 2007, 0706.1935.
[5] M. Sandiford,et al. Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly , 2000 .
[6] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[7] Eric Laloy,et al. Mass conservative three‐dimensional water tracer distribution from Markov chain Monte Carlo inversion of time‐lapse ground‐penetrating radar data , 2012 .
[8] K. Kappler,et al. Long-term monitoring of ULF electromagnetic fields at Parkfield, CA , 2009 .
[9] D. Vasco,et al. Utilizing the onset of time-lapse changes: a robust basis for reservoir monitoring and characterization , 2014 .
[10] F. Perrier,et al. Groundwater electromagnetic imaging in complex geological and topographical regions: A case study of a tectonic boundary in the French Alps , 2002 .
[11] M. Rosas Carbajal,et al. Focused time-lapse inversion of radio and audio magnetotelluric data , 2012, 1701.02529.
[12] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[13] T. Madden,et al. The effect of pressure on the electrical resistivity of water‐saturated crystalline rocks , 1965 .
[14] A. L. Ramirez,et al. Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .
[15] Kerry Key,et al. The feasibility of reservoir monitoring using time-lapse marine CSEM , 2009 .
[16] Peter A. Goode,et al. Influence of temperature on electrical conductivity on shaly sands , 1992 .
[17] G. Egbert,et al. Robust estimation of geomagnetic transfer functions , 1986 .
[18] Jinsong Chen,et al. Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .
[19] Panagiotis Tsourlos,et al. 4D active time constrained resistivity inversion , 2011 .
[20] P. Bedrosian,et al. Electromagnetic monitoring of the Groβ Schönebeck stimulation experiment , 2003 .
[21] Gerard Muñoz,et al. Exploring for Geothermal Resources with Electromagnetic Methods , 2013, Surveys in Geophysics.
[22] A. Revil,et al. Thermal conductivity of unsaturated clay-rocks , 2008 .
[23] D. Oldenburg,et al. NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .
[24] M. Menvielle,et al. Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case , 1999 .
[25] J. G. Kim,et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model , 2009 .
[26] M. Menvielle,et al. Thin-sheet electromagnetic inversion modeling using Monte Carlo Markov Chain (MCMC) algorithm , 2002 .
[27] Albert Tarantola,et al. Monte Carlo sampling of solutions to inverse problems , 1995 .
[28] Jasper A. Vrugt,et al. High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .
[29] Jonathan B. Ajo-Franklin,et al. Applying Compactness Constraints to Differential Traveltime Tomography , 2007 .
[30] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[31] S. Thiel,et al. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system , 2012 .
[32] J. Vrugt,et al. Probabilistic electrical resistivity tomography of a CO2 sequestration analog , 2014 .
[33] Alex Marcuello,et al. Monitoring freshwater‐seawater interface dynamics with audiomagnetotelluric data , 2009 .
[34] A. Tarantola,et al. Inverse problems = Quest for information , 1982 .
[35] Panagiotis Tsourlos,et al. 4D Active Time Constrained Resistivity Inversion , 2009 .
[36] D. Thomson,et al. Some comments on magnetotelluric response function estimation , 1989 .
[37] Leigh House,et al. Locating microearthquakes induced by hydraulic fracturing in crystalline rock , 1987 .
[38] James P. McNamara,et al. Application of time-lapse ERT imaging to watershed characterization , 2008 .
[39] Y. Rubin,et al. Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data , 2006 .
[40] V. Oye,et al. Real-Time Induced Seismicity Monitoring During Wellbore Stimulation at Paralana-2 South Australia , 2011 .
[41] W. Menke. Geophysical data analysis : discrete inverse theory , 1984 .
[42] Stephen J. Wright,et al. Conjugate Gradient Methods , 1999 .
[43] J. Claerbout,et al. Robust Modeling With Erratic Data , 1973 .
[44] Y. Rubin,et al. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .
[45] Niklas Linde,et al. Evidence of electrical anisotropy in limestone formations using the RMT technique , 2004 .
[46] Rita Streich,et al. Electromagnetic fields generated by finite‐length wire sources: comparison with point dipole solutions , 2011 .
[47] G. E. Archie. The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .
[48] S. Constable. Ten years of marine CSEM for hydrocarbon exploration , 2010 .
[49] Y. Ogawa,et al. Temporal changes in electrical resistivity at Sakurajima volcano from continuous magnetotelluric observations , 2011 .
[50] J. A. Vrugt,et al. Distributed Soil Moisture from Crosshole Ground‐Penetrating Radar Travel Times using Stochastic Inversion , 2013, 1701.01634.
[51] J. A. Vrugt,et al. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.
[52] J. Brugger,et al. An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia , 2005 .
[53] Trond Mannseth,et al. Sensitivity study of marine CSEM data for reservoir production monitoring , 2008 .
[54] Frederick D. Day-Lewis,et al. Time‐lapse inversion of crosswell radar data , 2002 .
[55] M. Teague. Image analysis via the general theory of moments , 1980 .
[56] Susan S. Hubbard,et al. Introduction to Hydrogeophysics , 2005 .
[57] N. Bohr. MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .
[58] Graham Heinson,et al. Time-lapse magnetotelluric monitoring of an enhanced geothermal system , 2013 .
[59] Evert Slob,et al. A feasibility study of land CSEM reservoir monitoring in a complex 3-D model , 2010 .
[60] Douglas LaBrecque,et al. Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring , 2001 .
[61] Andrew Binley,et al. Structural joint inversion of time‐lapse crosshole ERT and GPR traveltime data , 2010 .
[62] Gary D. Egbert,et al. Long‐term monitoring of ULF electromagnetic fields at Parkfield, California , 2010 .
[63] Alexander V. Grayver,et al. 3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation , 2014 .
[64] Gary D. Egbert,et al. Computational recipes for electromagnetic inverse problems , 2012 .
[65] N. Olsen,et al. Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .