Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

SUMMARY Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

[1]  K. Bahr Percolation in the crust derived from distortion of electric fields , 2000 .

[2]  Michel Campillo,et al.  3‐D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations , 2007 .

[3]  Michel Roussignol,et al.  Bayesian statistics of non-linear inverse problems: example of the magnetotelluric 1-D inverse problem , 1994 .

[4]  Michel Campillo,et al.  Towards forecasting volcanic eruptions using seismic noise , 2007, 0706.1935.

[5]  M. Sandiford,et al.  Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly , 2000 .

[6]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[7]  Eric Laloy,et al.  Mass conservative three‐dimensional water tracer distribution from Markov chain Monte Carlo inversion of time‐lapse ground‐penetrating radar data , 2012 .

[8]  K. Kappler,et al.  Long-term monitoring of ULF electromagnetic fields at Parkfield, CA , 2009 .

[9]  D. Vasco,et al.  Utilizing the onset of time-lapse changes: a robust basis for reservoir monitoring and characterization , 2014 .

[10]  F. Perrier,et al.  Groundwater electromagnetic imaging in complex geological and topographical regions: A case study of a tectonic boundary in the French Alps , 2002 .

[11]  M. Rosas Carbajal,et al.  Focused time-lapse inversion of radio and audio magnetotelluric data , 2012, 1701.02529.

[12]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[13]  T. Madden,et al.  The effect of pressure on the electrical resistivity of water‐saturated crystalline rocks , 1965 .

[14]  A. L. Ramirez,et al.  Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .

[15]  Kerry Key,et al.  The feasibility of reservoir monitoring using time-lapse marine CSEM , 2009 .

[16]  Peter A. Goode,et al.  Influence of temperature on electrical conductivity on shaly sands , 1992 .

[17]  G. Egbert,et al.  Robust estimation of geomagnetic transfer functions , 1986 .

[18]  Jinsong Chen,et al.  Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .

[19]  Panagiotis Tsourlos,et al.  4D active time constrained resistivity inversion , 2011 .

[20]  P. Bedrosian,et al.  Electromagnetic monitoring of the Groβ Schönebeck stimulation experiment , 2003 .

[21]  Gerard Muñoz,et al.  Exploring for Geothermal Resources with Electromagnetic Methods , 2013, Surveys in Geophysics.

[22]  A. Revil,et al.  Thermal conductivity of unsaturated clay-rocks , 2008 .

[23]  D. Oldenburg,et al.  NON-LINEAR INVERSION USING GENERAL MEASURES OF DATA MISFIT AND MODEL STRUCTURE , 1998 .

[24]  M. Menvielle,et al.  Bayesian inversion with Markov chains—I. The magnetotelluric one-dimensional case , 1999 .

[25]  J. G. Kim,et al.  4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model , 2009 .

[26]  M. Menvielle,et al.  Thin-sheet electromagnetic inversion modeling using Monte Carlo Markov Chain (MCMC) algorithm , 2002 .

[27]  Albert Tarantola,et al.  Monte Carlo sampling of solutions to inverse problems , 1995 .

[28]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[29]  Jonathan B. Ajo-Franklin,et al.  Applying Compactness Constraints to Differential Traveltime Tomography , 2007 .

[30]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[31]  S. Thiel,et al.  Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system , 2012 .

[32]  J. Vrugt,et al.  Probabilistic electrical resistivity tomography of a CO2 sequestration analog , 2014 .

[33]  Alex Marcuello,et al.  Monitoring freshwater‐seawater interface dynamics with audiomagnetotelluric data , 2009 .

[34]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[35]  Panagiotis Tsourlos,et al.  4D Active Time Constrained Resistivity Inversion , 2009 .

[36]  D. Thomson,et al.  Some comments on magnetotelluric response function estimation , 1989 .

[37]  Leigh House,et al.  Locating microearthquakes induced by hydraulic fracturing in crystalline rock , 1987 .

[38]  James P. McNamara,et al.  Application of time-lapse ERT imaging to watershed characterization , 2008 .

[39]  Y. Rubin,et al.  Reservoir-parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data , 2006 .

[40]  V. Oye,et al.  Real-Time Induced Seismicity Monitoring During Wellbore Stimulation at Paralana-2 South Australia , 2011 .

[41]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[42]  Stephen J. Wright,et al.  Conjugate Gradient Methods , 1999 .

[43]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[44]  Y. Rubin,et al.  A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .

[45]  Niklas Linde,et al.  Evidence of electrical anisotropy in limestone formations using the RMT technique , 2004 .

[46]  Rita Streich,et al.  Electromagnetic fields generated by finite‐length wire sources: comparison with point dipole solutions , 2011 .

[47]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[48]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[49]  Y. Ogawa,et al.  Temporal changes in electrical resistivity at Sakurajima volcano from continuous magnetotelluric observations , 2011 .

[50]  J. A. Vrugt,et al.  Distributed Soil Moisture from Crosshole Ground‐Penetrating Radar Travel Times using Stochastic Inversion , 2013, 1701.01634.

[51]  J. A. Vrugt,et al.  Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data , 2014, 1701.02540.

[52]  J. Brugger,et al.  An active amagmatic hydrothermal system: The Paralana hot springs, Northern Flinders Ranges, South Australia , 2005 .

[53]  Trond Mannseth,et al.  Sensitivity study of marine CSEM data for reservoir production monitoring , 2008 .

[54]  Frederick D. Day-Lewis,et al.  Time‐lapse inversion of crosswell radar data , 2002 .

[55]  M. Teague Image analysis via the general theory of moments , 1980 .

[56]  Susan S. Hubbard,et al.  Introduction to Hydrogeophysics , 2005 .

[57]  N. Bohr MONTE CARLO METHODS IN GEOPHYSICAL INVERSE PROBLEMS , 2002 .

[58]  Graham Heinson,et al.  Time-lapse magnetotelluric monitoring of an enhanced geothermal system , 2013 .

[59]  Evert Slob,et al.  A feasibility study of land CSEM reservoir monitoring in a complex 3-D model , 2010 .

[60]  Douglas LaBrecque,et al.  Difference Inversion of ERT Data: a Fast Inversion Method for 3-D In Situ Monitoring , 2001 .

[61]  Andrew Binley,et al.  Structural joint inversion of time‐lapse crosshole ERT and GPR traveltime data , 2010 .

[62]  Gary D. Egbert,et al.  Long‐term monitoring of ULF electromagnetic fields at Parkfield, California , 2010 .

[63]  Alexander V. Grayver,et al.  3D inversion and resolution analysis of land-based CSEM data from the Ketzin CO2 storage formation , 2014 .

[64]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[65]  N. Olsen,et al.  Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .