Categorial Grammar at a Cross-Roads

Categorial grammars are driven by resource logics in a proof format Benthem, 1991; Mootrgat, 1997). Thus, they revolve around derivation and computation, with theCurry-Howard. 1997 Gestalt switch taking proofs to type-theoretic denotions for the expression analyzed. But over thye past decades, categorial logics have also been analyzed model-theoretically in modal logics with standard possible worlds-style models (cf. Kurtonina, 1995). Then, e.g., a categorial product A•B ‘true ‚ of some objects, t, u satisfying A,B, respectively. This is a standard binary modality, which needs a ternary accessibility relation R for its abstract truth condition: M,8⊨ A•B iff ∃t, υ: Rs, tu & M,t ⊨ A & M,u ⊨ B Modal logic is a world of research rather different from the usual concerns in categorial grammar. What happens when we put the two agendas side by side?

[1]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[2]  Wojciech Buszkowski Completeness Results for Lambek Syntactic Calculus , 1986, Math. Log. Q..

[3]  G. Kerdiles,et al.  Saying It with Pictures: a logical landscape of conceptual graphs , 2001 .

[4]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[5]  Dov M. Gabbay,et al.  Products of Modal Logics, Part 1 , 1998, Log. J. IGPL.

[6]  M. de Rijke,et al.  Bisimulations for Temporal Logic , 1997, J. Log. Lang. Inf..

[7]  J.F.A.K. van Benthem,et al.  The Categorial Fine-Structure of Natural Language , 2003 .

[8]  M. van Lambalgen Natural Deduction for Generalized Quantifiers , 1996 .

[9]  Yde Venema,et al.  Dynamic Logic by David Harel, Dexter Kozen and Jerzy Tiuryn. The MIT Press, Cambridge, Massachusetts. Hardback: ISBN 0–262–08289–6, $50, xv + 459 pages , 2002, Theory and Practice of Logic Programming.

[10]  Wojciech Buszkowski,et al.  Mathematical Linguistics and Proof Theory , 1997, Handbook of Logic and Language.

[11]  Y. Venema A crash course in arrow logic , 1994 .

[12]  D. Harrison,et al.  Vicious Circles , 1995 .

[13]  Mati Pentus Models for the Lambek Calculus , 1995, Ann. Pure Appl. Log..

[14]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[15]  Jozef Gruska Foundations of Computing , 1997 .

[16]  Kees Doets,et al.  Basic model theory , 1996, Studies in logic, language and information.

[17]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[18]  maarten marx,et al.  Arrow logic and multi-modal logic , 1997 .

[19]  Johan van Benthem,et al.  Language in action , 1991, J. Philos. Log..

[20]  Szabolcs Mikulás,et al.  Lambek Calculus and its relational semantics: Completeness and incompleteness , 1994, J. Log. Lang. Inf..

[21]  Johan van Benthem,et al.  Exploring logical dynamics , 1996, Studies in logic, language and information.

[22]  Dov M. Gabbay,et al.  Chapter 13 – Labelled Deductive Systems , 2003 .

[23]  Yde Venema,et al.  Many-dimensional Modal Logic , 1991 .

[24]  Szabolcs Mikulás Strong completeness of the Lambek Calculus with respect to Relational Semantics , 1993 .

[25]  N. Kurtonina,et al.  Frames and Labels , 1995 .