Uncoupling VEGFA Functions in Arteriogenesis and Hematopoietic Stem Cell Specification

[1]  Yan Zhou,et al.  The evolution of alternative splicing exons in vascular endothelial growth factor A. , 2011, Gene.

[2]  D. Traver,et al.  An environmental Wnt16/Notch pathway specifies haematopoietic stem cells , 2011, Nature.

[3]  Roger Patient,et al.  The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1γ , 2011, The EMBO journal.

[4]  M. Gering,et al.  Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos. , 2010, Blood.

[5]  J. Rossant,et al.  Hedgehog regulates distinct vascular patterning events through VEGF-dependent and -independent mechanisms. , 2010, Blood.

[6]  F. Liu,et al.  Genetic control of hematopoietic development in Xenopus and zebrafish. , 2010, The International journal of developmental biology.

[7]  T. Enver,et al.  Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling. , 2010, Developmental cell.

[8]  Tatiana Segura,et al.  Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells , 2010, The Journal of cell biology.

[9]  S. Hiebert,et al.  Myeloid Translocation Gene 16 (MTG16) Interacts with Notch Transcription Complex Components To Integrate Notch Signaling in Hematopoietic Cell Fate Specification , 2010, Molecular and Cellular Biology.

[10]  M. Hirashima Regulation of endothelial cell differentiation and arterial specification by VEGF and Notch signaling , 2009, Anatomical science international.

[11]  M. Ladomery,et al.  Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors , 2008, Journal of Cell Science.

[12]  P. Vyas,et al.  Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. , 2008, Blood.

[13]  S. Hiebert,et al.  Deletion of Mtg16, a Target of t(16;21), Alters Hematopoietic Progenitor Cell Proliferation and Lineage Allocation , 2008, Molecular and Cellular Biology.

[14]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[15]  M. Presta,et al.  Calcitonin receptor-like receptor guides arterial differentiation in zebrafish , 2008 .

[16]  Elaine Dzierzak,et al.  Of lineage and legacy: the development of mammalian hematopoietic stem cells , 2008, Nature Immunology.

[17]  E. Morita,et al.  Distinct signaling pathways confer different vascular responses to VEGF 121 and VEGF 165 , 2008, Growth factors.

[18]  F. Heppner,et al.  Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. , 2007, Developmental biology.

[19]  Fredrik Lanner,et al.  Functional Arterial and Venous Fate Is Determined by Graded VEGF Signaling and Notch Status During Embryonic Stem Cell Differentiation , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[20]  Patrick Rodriguez,et al.  Novel binding partners of Ldb1 are required for haematopoietic development , 2006 .

[21]  K. Kissa,et al.  Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. , 2006, Immunity.

[22]  T. Hoang,et al.  ETO2 coordinates cellular proliferation and differentiation during erythropoiesis , 2006, The EMBO journal.

[23]  P. Vyas,et al.  ETO-2 Associates with SCL in Erythroid Cells and Megakaryocytes and Provides Repressor Functions in Erythropoiesis , 2005, Molecular and Cellular Biology.

[24]  L. Zon,et al.  Hematopoietic stem cell fate is established by the Notch-Runx pathway. , 2005, Genes & development.

[25]  M. Gering,et al.  Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. , 2005, Developmental cell.

[26]  J. L. de la Pompa,et al.  RBPjκ-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells , 2005 .

[27]  Janet Rossant,et al.  Dosage-sensitive requirement for mouse Dll4 in artery development. , 2004, Genes & development.

[28]  S. Ogawa,et al.  Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. , 2003, Immunity.

[29]  W. Harris,et al.  A novel function for Hedgehog signalling in retinal pigment epithelium differentiation , 2003, Development.

[30]  J. Davis,et al.  The ETO (MTG8) gene family. , 2003, Gene.

[31]  A. Ciau-Uitz,et al.  Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus , 2002, Development.

[32]  Christopher C W Hughes,et al.  Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. , 2002, Microvascular research.

[33]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[34]  B. Weinstein,et al.  sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. , 2002, Developmental cell.

[35]  E. Weinberg,et al.  The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development , 2001, Mechanisms of Development.

[36]  Christopher J. Robinson,et al.  The splice variants of vascular endothelial growth factor (VEGF) and their receptors. , 2001, Journal of cell science.

[37]  A. Ciau-Uitz,et al.  Distinct Origins of Adult and Embryonic Blood in Xenopus , 2000, Cell.

[38]  P. Krieg,et al.  VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. , 1998, Development.

[39]  T. Nagase,et al.  The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. , 1998, Blood.

[40]  Janet Rossant,et al.  A Requirement for Flk1 in Primitive and Definitive Hematopoiesis and Vasculogenesis , 1997, Cell.

[41]  Yi-Lin Yan,et al.  Double fluorescent in situ hybridization to zebrafish embryos. , 1996, Trends in genetics : TIG.

[42]  Kenneth J. Hillan,et al.  Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene , 1996, Nature.

[43]  Lieve Moons,et al.  Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele , 1996, Nature.

[44]  J. Smith,et al.  Negative control of Xenopus GATA-2 by activin and noggin with eventual expression in precursors of the ventral blood islands. , 1994, Development.

[45]  J C Smith,et al.  Dorsalization and neural induction: properties of the organizer in Xenopus laevis. , 1983, Journal of embryology and experimental morphology.

[46]  J. Turpen,et al.  Dual contribution of embryonic ventral blood island and dorsal lateral plate mesoderm during ontogeny of hemopoietic cells in Xenopus laevis. , 1983, Journal of immunology.

[47]  J. Faber,et al.  Normal Table of Xenopus Laevis (Daudin) , 1958 .

[48]  A. Fischer,et al.  Hypoxia-mediated activation of Dll4-Notch-Hey2 signaling in endothelial progenitor cells and adoption of arterial cell fate. , 2007, Experimental cell research.

[49]  Shay Soker,et al.  VEGF165 mediates formation of complexes containing VEGFR‐2 and neuropilin‐1 that enhance VEGF165‐receptor binding , 2002, Journal of cellular biochemistry.

[50]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .