Two-Photon Imaging of Neuronal Network Dynamics in Neocortex

[1]  O. Garaschuk,et al.  Optical monitoring of brain function in vivo: from neurons to networks , 2006, Pflügers Archiv.

[2]  Benjamin F. Grewe,et al.  Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens , 2011, Biomedical optics express.

[3]  Sooyoung Chung,et al.  Highly ordered arrangement of single neurons in orientation pinwheels , 2006, Nature.

[4]  J. Tiago Gonçalves,et al.  Simultaneous 2-photon calcium imaging at different cortical depths in vivo with spatiotemporal multiplexing , 2010, Nature Methods.

[5]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[6]  F. Helmchen,et al.  Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo. , 2008, Optics express.

[7]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[8]  Olav Solgaard,et al.  In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror. , 2009, Optics letters.

[9]  Nathalie L Rochefort,et al.  Sparsification of neuronal activity in the visual cortex at eye-opening , 2009, Proceedings of the National Academy of Sciences.

[10]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[11]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Reid,et al.  Local Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex , 2011, The Journal of Neuroscience.

[13]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[14]  Timothy D. Soper,et al.  Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide‐field, full‐color imaging , 2010, Journal of biophotonics.

[15]  Christopher Smith,et al.  Arbitrary-scan imaging for two-photon microscopy , 2010, BiOS.

[16]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[17]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[18]  Morgane M. Roth,et al.  Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex , 2011, Front. Neural Circuits.

[19]  D. Tank,et al.  Functional Clustering of Neurons in Motor Cortex Determined by Cellular Resolution Imaging in Awake Behaving Mice , 2009, The Journal of Neuroscience.

[20]  Zachary F. Mainen,et al.  The Functional Microarchitecture of the Mouse Barrel Cortex , 2007, PLoS Biology.

[21]  Christine Grienberger,et al.  Imaging Calcium in Neurons , 2012, Neuron.

[22]  Laurie D. Burns,et al.  High-speed, miniaturized fluorescence microscopy in freely moving mice , 2008, Nature Methods.

[23]  R. Tsien A non-disruptive technique for loading calcium buffers and indicators into cells , 1981, Nature.

[24]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[25]  Benjamin F. Grewe,et al.  Optical probing of neuronal ensemble activity , 2009, Current Opinion in Neurobiology.

[26]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[27]  Nathan R. Wilson,et al.  Division and subtraction by distinct cortical inhibitory networks in vivo , 2012, Nature.

[28]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[29]  Shaoqun Zeng,et al.  Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism. , 2006, Optics letters.

[30]  S. Rumpel,et al.  Discrete Neocortical Dynamics Predict Behavioral Categorization of Sounds , 2012, Neuron.

[31]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[32]  Brendon O. Watson,et al.  SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators , 2008, Frontiers in neural circuits.

[33]  Fritjof Helmchen,et al.  Measuring neuronal population activity using 3D laser scanning. , 2011, Cold Spring Harbor protocols.

[34]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[35]  David S. Greenberg,et al.  Visually evoked activity in cortical cells imaged in freely moving animals , 2009, Proceedings of the National Academy of Sciences.

[36]  Gayathri N Ranganathan,et al.  Optical recording of neuronal spiking activity from unbiased populations of neurons with high spike detection efficiency and high temporal precision. , 2010, Journal of neurophysiology.

[37]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[38]  H. Lutcke,et al.  Two-photon imaging and analysis of neural network dynamics , 2011, 1102.5528.

[39]  R. Reid,et al.  Frontiers in Cellular Neuroscience Cellular Neuroscience Methods Article , 2022 .

[40]  T. Murphy,et al.  In Vivo Calcium Imaging Reveals Functional Rewiring of Single Somatosensory Neurons after Stroke , 2008, The Journal of Neuroscience.

[41]  F. Helmchen,et al.  New angles on neuronal dendrites in vivo. , 2007, Journal of neurophysiology.

[42]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[43]  R. Silver,et al.  A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. , 2010, Optics express.

[44]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[45]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[46]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[47]  Nathan R. Wilson,et al.  Response Features of Parvalbumin-Expressing Interneurons Suggest Precise Roles for Subtypes of Inhibition in Visual Cortex , 2010, Neuron.

[48]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.

[49]  Heinrich Spiecker,et al.  The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. , 2007, Biophysical journal.

[50]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  O. Paulsen,et al.  Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates , 2012, Proceedings of the National Academy of Sciences.

[52]  Fritjof Helmchen,et al.  Miniaturization of Fluorescence Microscopes Using Fibre Optics , 2002, Experimental physiology.

[53]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[54]  F. Helmchen,et al.  Post hoc immunostaining of GABAergic neuronal subtypes following in vivo two-photon calcium imaging in mouse neocortex , 2011, Pflügers Archiv - European Journal of Physiology.

[55]  E. Cocker,et al.  In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. , 2005, Optics letters.

[56]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[57]  Benjamin F. Grewe,et al.  High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision , 2010, Nature Methods.

[58]  Rafael Kurtz,et al.  Application of multiline two-photon microscopy to functional in vivo imaging , 2006, Journal of Neuroscience Methods.

[59]  R. Reid,et al.  Homeostatic Regulation of Eye-Specific Responses in Visual Cortex during Ocular Dominance Plasticity , 2007, Neuron.

[60]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[61]  J. White,et al.  Two-photon imaging of spatially extended neuronal network dynamics with high temporal resolution , 2008, Journal of Neuroscience Methods.

[62]  Morgane M. Roth,et al.  Distinct Functional Properties of Primary and Posteromedial Visual Area of Mouse Neocortex , 2012, The Journal of Neuroscience.

[63]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[64]  P. Kara,et al.  A micro-architecture for binocular disparity and ocular dominance in visual cortex , 2009, Nature.

[65]  P. J. Sjöström,et al.  Functional specificity of local synaptic connections in neocortical networks , 2011, Nature.

[66]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[67]  Shihab A. Shamma,et al.  Dichotomy of functional organization in the mouse auditory cortex , 2010, Nature Neuroscience.

[68]  R. Reid,et al.  Broadly Tuned Response Properties of Diverse Inhibitory Neuron Subtypes in Mouse Visual Cortex , 2010, Neuron.

[69]  O. Garaschuk,et al.  Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo , 2006, Nature Protocols.

[70]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.