Operating Requirements for Durable Polymer-Electrolyte Fuel Cell Stacks

Successful developers of fuel cells have learned that the keys to achieving excellent durability are controlling potential and temperature, as well as proper management of the electrolyte. While a polymer-electrolyte fuel cell (PEFC) has inherent advantages relative to other types of fuel cells, including low operating temperatures and an immobilized electrolyte, PEFC stacks also have unique durability challenges owing to the intended applications. These challenges include cyclic operation that can degrade materials owing to significant changes in potential, temperature, and relative humidity. The need for hydration of the membrane as well as the presence of water as both liquid and vapor within the cells also present complications. Therefore, the development of durable PEFC stacks requires careful attention to the operating conditions and effective water management.

[1]  Vincenzo Antonucci,et al.  The influence of Pt on the electrooxidation behaviour of carbon in phosphoric acid , 1992 .

[2]  D. A. Masten,et al.  System design for vehicle applications: GM/opel , 2010 .

[3]  K. Ota,et al.  Consumption Rate of Pt under Potential Cycling , 2007 .

[4]  L. J. Bregoli,et al.  A Reverse-Current Decay Mechanism for Fuel Cells , 2005 .

[5]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[6]  G. W. Graham,et al.  Influence of Cyclic Operation on PEM Fuel Cell Catalyst Stability , 2007 .

[7]  Hubert A. Gasteiger,et al.  Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation , 2005 .

[8]  J.A.S. Bett,et al.  Crystallite growth of platinum dispersed on graphitized carbon black , 1974 .

[9]  T. Jarvi,et al.  Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions , 2004 .

[10]  T. Fuller,et al.  Applying the Lessons Learned from PAFC to PEM Fuel Cells , 2006 .

[11]  John Newman,et al.  A theoretical study of membrane constraint in polymer-electrolyte fuel cells , 2004 .

[12]  J. Newman,et al.  Mass Transport in Gas‐Diffusion Electrodes: A Diagnostic Tool for Fuel‐Cell Cathodes , 1998 .

[13]  Ernest Yeager,et al.  Platinum Dissolution in Concentrated Phosphoric Acid , 1979 .

[14]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[15]  A. Weber,et al.  Understanding porous water-transport plates in polymer-electrolyte fuel cells , 2007 .

[16]  Hubert A. Gasteiger,et al.  Two Fuel Cell Cars In Every Garage , 2005 .

[17]  K. Reifsnider,et al.  Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability , 2006 .

[18]  Francisco A. Uribe,et al.  A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning , 2002 .

[19]  Jingrong Yu,et al.  In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification , 2005 .

[20]  Jonathan O'Neill,et al.  PEM Fuel Cell Freeze Durability and Cold Start Project , 2008 .

[21]  L. J. Bregoli The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid , 1978 .

[22]  Mike L. Perry,et al.  Systems Strategies to Mitigate Carbon Corrosion in Fuel Cells , 2006 .

[23]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[24]  T. Gierke,et al.  Ion transport and clustering in nafion perfluorinated membranes , 1983 .

[25]  W. Gu,et al.  Beginning‐of‐life MEA performance — efficiency loss contributions , 2010 .

[26]  H. R. Kunz,et al.  Surface Area Loss of Platinum Supported on Carbon in Phosphoric Acid Electrolyte , 1980 .

[27]  G. Gebel,et al.  Swelling study of perfluorosulphonated ionomer membranes , 1993 .

[28]  Piotr Zelenay,et al.  Recoverable Cathode Performance Loss in Direct Methanol Fuel Cells , 2006 .

[29]  Deborah J. Myers,et al.  Effect of voltage on platinum dissolution : Relevance to polymer electrolyte fuel cells , 2006 .

[30]  In-Hwan Oh,et al.  Effects of Water Removal on the Performance Degradation of PEMFCs Repetitively Brought to < 0 ° C , 2004 .

[31]  J.A.S. Bett,et al.  Crystallite growth of platinum dispersed on graphitized carbon black: II. Effect of liquid environment , 1976 .

[32]  A. Laconti,et al.  Mechanisms of membrane degradation , 2010 .

[33]  Mike L. Perry,et al.  Evaporatively-Cooled PEM Fuel-Cell Stack and System , 2006 .

[34]  Robert M. Darling,et al.  Model of Carbon Corrosion in PEM Fuel Cells , 2006 .

[35]  D. A. Landsman,et al.  Catalyst studies and coating technologies , 2010 .

[36]  P. Stonehart,et al.  Potential cycling effects on platinum electrocatalyst surfaces , 1973 .

[37]  Robert M. Darling,et al.  Damage to the Cathode Catalyst of a PEM Fuel Cell Caused by Localized Fuel Starvation , 2006 .

[38]  Hubert A. Gasteiger,et al.  Effect of Relative Humidity on Oxygen Reduction Kinetics in a PEMFC , 2005 .

[39]  M. Perry Optimizing PEFC Stack Design and Operation for Energy and Water Balance in Transportation Systems , 2004 .

[40]  Ping Yu,et al.  PtCo/C cathode catalyst for improved durability in PEMFCs , 2005 .

[41]  F. Büchi,et al.  Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle X-ray scattering , 1994 .

[42]  James M. Fenton,et al.  Effect of Catalyst Properties on Membrane Degradation Rate and the Underlying Degradation Mechanism in PEMFCs , 2006 .

[43]  Suhao He,et al.  One-Dimensional Transient Model for Frost Heave in Polymer Electrolyte Fuel Cells I. Physical Model , 2006 .

[44]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[45]  H. Binder,et al.  Über die anodische oxydation von aktivkohlen in wässrigen elektrolyten , 1964 .