Gurukulam: Reasoning based Learning System using Extended Description Logics

Knowledge representation and reasoning aims at designing computer systems that reason about a machine­interpretable representation of the world, similar to human reasoning. Reasoning is a mechanism which helps in retracting the previously inferred facts or changing the confidence factors when conditions change while more complete information is received. This paper presents the design and implementation of Gurukulam – non­monotonic reasoning based learning system which involves extended description logics for knowledge representation. The knowledgebase is constructed by adapting the fundamental classification of world knowledge concepts as per Nyaya Sastra, the famous Indian Philosophy. The system simulates 5 student entities which inputs queries from the user interface and identifies the knowledge units which are grouped into a suitable structure to be fed to the reasoning services engine. Inferences are made from the submitted input and are later updated to their respective knowledge base. Any knowledge base conflicts arising at this juncture is raised as doubts to the teaching entity for further clarification. Upon user response, the system alters false beliefs which created conflicts during previous inferences, thus demonstrating learning by non­monotonic reasoning.

[1]  P. I. Gradinarov Phenomenology and Indian epistemology : studies in Nyāya-Vaisesika transcendental logic and atomism , 1990 .

[2]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[3]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[4]  Amedeo Napoli,et al.  A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data , 2007, ICFCA.

[5]  Igor S. Anureev,et al.  Combining Two Formalism for Reasoning about Concepts , 2007, Description Logics.

[6]  Ronald J. Brachman,et al.  ON THE EPISTEMOLOGICAL STATUS OF SEMANTIC NETWORKS , 1979 .

[7]  Robert M. MacGregor,et al.  Inside the LOOM description classifier , 1991, SGAR.

[8]  Ian Horrocks,et al.  FaCT++ Description Logic Reasoner: System Description , 2006, IJCAR.

[9]  Thomas R. Gruber,et al.  Toward principles for the design of ontologies used for knowledge sharing? , 1995, Int. J. Hum. Comput. Stud..

[10]  Franz Baader,et al.  CEL - A Polynomial-Time Reasoner for Life Science Ontologies , 2006, IJCAR.

[11]  Diego Calvanese,et al.  Description logics: foundations for class-based knowledge representation , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[12]  Deborah L. McGuinness,et al.  CLASSIC: a structural data model for objects , 1989, SIGMOD '89.

[13]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[14]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[15]  和田 壽弘,et al.  Invariable concomitance in Navya-Nyāya , 1990 .

[16]  Aaron Sloman,et al.  The St. Thomas Common Sense Symposium: Designing Architectures for Human-Level Intelligence , 2004, AI Mag..

[17]  Sergio Tessaris,et al.  Implementing and Testing Expressive Description Logics: a Preliminary Report , 1995 .

[18]  Rolf Grütter,et al.  Towards Spatial Reasoning in the Semantic Web: A Hybrid Knowledge Representation System Architecture , 2007, AGILE Conf..

[19]  Stephan Grimm,et al.  Knowledge Representation and Ontologies , 2010, Scientific Data Mining and Knowledge Discovery.

[20]  Andreas Abecker,et al.  Semantic Web Services: Concepts, Technologies, and Applications , 2010 .

[21]  Sarvepalli Radhakrishnan,et al.  A Source Book in Indian Philosophy , 1957 .

[22]  S. Stich,et al.  The cognitive basis of science , 2002 .

[23]  Kieron O'Hara,et al.  Editorial: Knowledge representation with ontologies: Present challenges-Future possibilities , 2007 .

[24]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[25]  Peter Szolovits,et al.  What Is a Knowledge Representation? , 1993, AI Mag..

[26]  John K. Debenham,et al.  Knowledge Base Maintenance through Knowledge Representation , 2001, DEXA.