Standardization of protocols in cDNA microarray analysis.

Systematic variations can occur at various steps of a cDNA microarray experiment and affect the measurement of gene expression levels. Accepted standards integrated into every cDNA microarray analysis can assess these variabilities and aid the interpretation of cDNA microarray experiments from different sources. A universally applicable approach to evaluate parameters such as input and output ratios, signal linearity, hybridization specificity and consistency across an array, as well as normalization strategies, is the utilization of exogenous control genes as spike-in and negative controls. We suggest that the use of such control sets, together with a sufficient number of experimental repeats, in-depth statistical analysis and thorough data validation should be made mandatory for the publication of cDNA microarray data.

[1]  David J. Lockhart,et al.  Expressing what's on your mind: DNA arrays and the brain , 2001, Nature Reviews Neuroscience.

[2]  Johan T den Dunnen,et al.  A common reference for cDNA microarray hybridizations. , 2002, Nucleic acids research.

[3]  E. Brown,et al.  Quantitative analysis of mRNA amplification by in vitro transcription. , 2001, Nucleic acids research.

[4]  H. Garner,et al.  Toward a universal standard: comparing two methods for standardizing spotted microarray data. , 2002, BioTechniques.

[5]  Jason C. Mills,et al.  DNA microarrays and beyond: completing the journey from tissue to cell , 2001, Nature Cell Biology.

[6]  D Cogdell,et al.  Sequence verification as quality-control step for production of cDNA microarrays. , 2001, BioTechniques.

[7]  C Schwager,et al.  Comparison of fluorescent tag DNA labeling methods used for expression analysis by DNA microarrays. , 2002, BioTechniques.

[8]  Stephen M. Hewitt,et al.  Post-analysis follow-up and validation of microarray experiments , 2002, Nature Genetics.

[9]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[10]  G E Archer,et al.  Maximization of signal derived from cDNA microarrays. , 2001, BioTechniques.

[11]  Andrew J. Holloway,et al.  Options available—from start to finish—for obtaining data from DNA microarrays II , 2002, Nature Genetics.

[12]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[13]  S. Sealfon,et al.  Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. , 2002, Nucleic acids research.

[14]  T. Kornberg,et al.  Expression profiling of Drosophilaimaginal discs , 2002, Genome Biology.

[15]  D. Pisetsky,et al.  DNA microarrays: boundless technology or bound by technology? Guidelines for studies using microarray technology. , 2002, Arthritis and rheumatism.

[16]  W. Hale,et al.  Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis. , 2002, Nucleic acids research.

[17]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[18]  M. Oh,et al.  Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. , 2001, Nucleic acids research.

[19]  S. Wölfl,et al.  Ranking: a closer look on globalisation methods for normalisation of gene expression arrays. , 2002, Nucleic acids research.

[20]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[21]  Catherine Brooksbank,et al.  An open letter to the scientific journals , 2002, Bioinform..

[22]  T R Zacharewski,et al.  Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. , 2001, Nucleic acids research.

[23]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[24]  B. Weir,et al.  Assessing sources of variability in microarray gene expression data. , 2002, BioTechniques.

[25]  G. A. Whitmore,et al.  Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Quirion,et al.  DNA microarrays in neuropsychopharmacology. , 2001, Trends in pharmacological sciences.

[27]  A. Gasch Yeast genomic expression studies using DNA microarrays. , 2002, Methods in enzymology.

[28]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[29]  Mechthild Falkenhahn,et al.  Relationships and distinctions in iron-regulatory networks responding to interrelated signals. , 2003, Blood.

[30]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[31]  J Quackenbush,et al.  Use of RNA and genomic DNA references for inferred comparisons in DNA microarray analyses. , 2002, BioTechniques.

[32]  G. Churchill,et al.  Statistical design and the analysis of gene expression microarray data. , 2001, Genetical research.

[33]  Jerry Li,et al.  Within the fold: assessing differential expression measures and reproducibility in microarray assays , 2002, Genome Biology.

[34]  W. Pan,et al.  How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach , 2002, Genome Biology.

[35]  Emanuel Petricoin,et al.  Molecular profiling of human cancer , 2000, Nature Reviews Genetics.

[36]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[37]  R. Nadon,et al.  Statistical issues with microarrays: processing and analysis. , 2002, Trends in genetics : TIG.