How to score alternatives when criteria are scored on an ordinal scale
暂无分享,去创建一个
[1] Jean Pierre Brans,et al. A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .
[2] Radko Mesiar,et al. A complete description of comparison meaningful functions , 2005, EUSFLAT Conf..
[3] Jean-Luc Marichal,et al. On Sugeno integral as an aggregation function , 2000, Fuzzy Sets Syst..
[4] Jean-Claude Vansnick. On the problem of weights in multiple criteria decision making (the noncompensatory approach) , 1986 .
[5] Marc Roubens,et al. Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision Aid , 2005 .
[6] C. B. E. Costa,et al. A Theoretical Framework for Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) , 1997 .
[7] Salvatore Greco,et al. Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..
[8] Michel Grabisch,et al. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..
[9] Michel Grabisch,et al. Representation of preferences over a finite scale by a mean operator , 2006, Math. Soc. Sci..
[10] Christophe Labreuche,et al. Preference modeling on totally ordered sets by the Sugeno integral , 2005, Discret. Appl. Math..
[11] Philippe Vincke,et al. Lexicographic aggregation of semiorders , 1992 .
[12] Salvatore Greco,et al. Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..
[13] Bryan H. Massam,et al. Methods for comparing policies using multiple criteria: an urban example , 1982 .
[14] S. Ovchinnikov. Means on ordered sets , 1996 .
[15] M. Kane. Measurement theory. , 1980, NLN publications.
[16] János C. Fodor,et al. Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..
[17] Michel Grabisch,et al. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..
[18] Bernard Roy,et al. Classement et choix en présence de points de vue multiples , 1968 .
[19] Joan Torrens,et al. t-Operators and uninorms on a finite totally ordered set , 1999, Int. J. Intell. Syst..
[20] Joan Torrens,et al. On bisymmetric operators on a finite chain , 2003, IEEE Trans. Fuzzy Syst..
[21] Jean H. P. Paelinck,et al. Qualitative multiple criteria analysis, environmental protection and multiregional development , 1976 .
[22] 菅野 道夫,et al. Theory of fuzzy integrals and its applications , 1975 .
[23] Radko Mesiar,et al. Aggregation on Finite Ordinal Scales by Scale Independent Functions , 2004, Order.
[24] Patrick Meyer,et al. Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..
[25] Didier Dubois,et al. The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..
[26] Carlos A. Bana e Costa,et al. Applications of the MACBETH Approach in the Framework of an Additive Aggregation Model , 1997 .
[27] P. Vincke,et al. Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .
[28] S. Greco,et al. Decision Rule Approach , 2005 .