How to score alternatives when criteria are scored on an ordinal scale

We address in this paper the problem of scoring alternatives when they are evaluated with respect to several criteria on a finite ordinal scale $E$. We show that in general, the ordinal scale $E$ has to be refined or shrunk in order to be able to represent the preference of the decision maker by an aggregation operator belonging to the family of mean operators. The paper recalls previous theoretical results of the author giving necessary and sufficient conditions for a representation of preferences, and then focusses on describing practical algorithms and examples.

[1]  Jean Pierre Brans,et al.  A PREFERENCE RANKING ORGANIZATION METHOD , 1985 .

[2]  Radko Mesiar,et al.  A complete description of comparison meaningful functions , 2005, EUSFLAT Conf..

[3]  Jean-Luc Marichal,et al.  On Sugeno integral as an aggregation function , 2000, Fuzzy Sets Syst..

[4]  Jean-Claude Vansnick On the problem of weights in multiple criteria decision making (the noncompensatory approach) , 1986 .

[5]  Marc Roubens,et al.  Choice, Ranking and Sorting in Fuzzy Multiple Criteria Decision Aid , 2005 .

[6]  C. B. E. Costa,et al.  A Theoretical Framework for Measuring Attractiveness by a Categorical Based Evaluation Technique (MACBETH) , 1997 .

[7]  Salvatore Greco,et al.  Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules , 2004, Eur. J. Oper. Res..

[8]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[9]  Michel Grabisch,et al.  Representation of preferences over a finite scale by a mean operator , 2006, Math. Soc. Sci..

[10]  Christophe Labreuche,et al.  Preference modeling on totally ordered sets by the Sugeno integral , 2005, Discret. Appl. Math..

[11]  Philippe Vincke,et al.  Lexicographic aggregation of semiorders , 1992 .

[12]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[13]  Bryan H. Massam,et al.  Methods for comparing policies using multiple criteria: an urban example , 1982 .

[14]  S. Ovchinnikov Means on ordered sets , 1996 .

[15]  M. Kane Measurement theory. , 1980, NLN publications.

[16]  János C. Fodor,et al.  Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..

[17]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[18]  Bernard Roy,et al.  Classement et choix en présence de points de vue multiples , 1968 .

[19]  Joan Torrens,et al.  t-Operators and uninorms on a finite totally ordered set , 1999, Int. J. Intell. Syst..

[20]  Joan Torrens,et al.  On bisymmetric operators on a finite chain , 2003, IEEE Trans. Fuzzy Syst..

[21]  Jean H. P. Paelinck,et al.  Qualitative multiple criteria analysis, environmental protection and multiregional development , 1976 .

[22]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[23]  Radko Mesiar,et al.  Aggregation on Finite Ordinal Scales by Scale Independent Functions , 2004, Order.

[24]  Patrick Meyer,et al.  Sorting multi-attribute alternatives: The TOMASO method , 2005, Comput. Oper. Res..

[25]  Didier Dubois,et al.  The Use of the Discrete Sugeno Integral in Decision-Making: A Survey , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[26]  Carlos A. Bana e Costa,et al.  Applications of the MACBETH Approach in the Framework of an Additive Aggregation Model , 1997 .

[27]  P. Vincke,et al.  Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .

[28]  S. Greco,et al.  Decision Rule Approach , 2005 .