The nature of the atomic surfaces of quasiperiodic self-similar structures

Quasiperiodic self-similar chains generated by substitutions (i.e. deterministic concatenation rules) and their diffraction spectra are analysed in a systematic fashion, from the viewpoint of the superspace formalism. A substitution acting on n objects generates quasiperiodic chains if, and only if, the associated substitution matrix fulfils two arithmetic conditions (Pisot property and unit determinant). The structures thus obtained can be alternatively built as sections of periodic patterns in an n-dimensional superspace, which are regular repetitions of an atomic surface. The authors derive a general algorithm to construct this atomic surface. It is a compact set of the (n-1)-dimensional internal space, which is a unit cell for a lattice of translations. The atomic surface is nevertheless not necessarily connected, and its boundary is generically an anisotropic self-similar fractal. The dimension dB of this boundary is shown to govern the anomalously slow fall-off of the intensities of Bragg diffractions, and therefore to influence physical properties.

[1]  Janner Non-Euclidean symmetries in crystals. , 1991, Physical review letters.

[2]  T. Janssen,et al.  Characterisation of spectra and wave functions of aperiodic crystal structures , 1991 .

[3]  C. Godrèche Non pisot tilings and singular scattering , 1991 .

[4]  Claude Godrèche,et al.  Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures , 1990 .

[5]  T. Janssen Aperiodic crystals: A contradictio in terminis? , 1988 .

[6]  S. Aubry,et al.  Scaling properties of a structure intermediate between quasiperiodic and random , 1988 .

[7]  J. Luck,et al.  A structure intermediate between quasi-periodic and random , 1987 .

[8]  J. Luck,et al.  Quasiperiodicity and types of order; a study in one dimension , 1987 .

[9]  T. Janssen Crystallography of quasi‐crystals , 1986 .

[10]  Bak,et al.  Icosahedral crystals: Where are the atoms? , 1986, Physical review letters.

[11]  J. Luck,et al.  Phonon spectra in one-dimensional quasicrystals , 1986 .

[12]  Bak Symmetry, stability, and elastic properties of icosahedral incommensurate crystals. , 1985, Physical review. B, Condensed matter.

[13]  Elser,et al.  Indexing problems in quasicrystal diffraction. , 1985, Physical review. B, Condensed matter.

[14]  L. Levitov,et al.  6-dimensional properties of Al0.86Mn0.14 alloy , 1985 .

[15]  F. Michel Dekking,et al.  Replicating Superfigures and Endomorphisms of Free Groups , 1982, J. Comb. Theory, Ser. A.

[16]  T. Janssen,et al.  Symmetry of periodically distorted crystals , 1977 .

[17]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[18]  Godrèche,et al.  Indexing the diffraction spectrum of a non-Pisot self-similar structure. , 1992, Physical review. B, Condensed matter.

[19]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[20]  T. Janssen,et al.  Incommensurability in crystals , 1987 .

[21]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[22]  R. Mauldin,et al.  Random recursive constructions: asymptotic geometric and topological properties , 1986 .

[23]  J. Marion Mesures de Hausdorff et théorie de Perron-Frobenius des matrices non-négatives , 1985 .

[24]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[25]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .