GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects

Abstract. GEOtop is a fine-scale grid-based simulator that represents the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of the water and energy budgets in the snow cover and their effect on soil temperature. Here, we present the core components of GEOtop 2.0 and demonstrate its functioning. Based on a synthetic simulation, we show that the interaction of processes represented in GEOtop 2.0 can result in phenomena that are significant and relevant for applications involving permafrost and seasonally frozen soils, both in high altitude and latitude regions.

[1]  Mathias Bavay,et al.  MeteoIO 2.4.2: a preprocessing library for meteorological data , 2014 .

[2]  Giacomo Bertoldi,et al.  Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps , 2014 .

[3]  Claudia Notarnicola,et al.  Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling , 2014 .

[4]  G. Kiely,et al.  How does afforestation affect the hydrology of a blanket peatland? A modelling study , 2013 .

[5]  Stephan Gruber,et al.  Large-area land surface simulations in heterogeneous terrain driven by global data sets: Application to mountain permafrost , 2013 .

[6]  B. Kurylyk,et al.  The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils , 2013 .

[7]  S. Gruber,et al.  Sensitivities and uncertainties of modeled ground temperatures in mountain environments , 2013 .

[8]  Olaf David,et al.  Modeling shortwave solar radiation using the JGrass-NewAge system , 2012 .

[9]  D. Poncet,et al.  An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models , 2012 .

[10]  E. Martin,et al.  The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2 , 2012 .

[11]  S. Gruber,et al.  Uncertainties of parameterized near-surface downward longwave and clear-sky direct radiation , 2012 .

[12]  S. Morin,et al.  Numerical and experimental investigations of the effective thermal conductivity of snow , 2011 .

[13]  Andrea Antonello,et al.  The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing , 2011 .

[14]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[15]  Riccardo Rigon,et al.  A robust and energy-conserving model of freezing variably-saturated soil , 2011 .

[16]  P. Marsh,et al.  Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra , 2011 .

[17]  Scott L. Painter,et al.  Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications , 2011 .

[18]  Philip Marsh,et al.  Observations and modeling of turbulent fluxes during melt at the shrub-tundra transition zone 1: point scale variations. , 2010 .

[19]  Claudia Notarnicola,et al.  Topographical and ecohydrological controls on land surface temperature in an alpine catchment , 2010 .

[20]  Michael Lehning,et al.  Radiosity Approach for the Shortwave Surface Radiation Balance in Complex Terrain , 2009 .

[21]  Gerald N. Flerchinger,et al.  Comparison of algorithms for incoming atmospheric long‐wave radiation , 2009 .

[22]  A. Monin,et al.  Basic laws of turbulent mixing in the surface layer of the atmosphere , 2009 .

[23]  S. Kienzle A new temperature based method to separate rain and snow , 2008 .

[24]  Giacomo Bertoldi,et al.  Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop‐FS , 2008 .

[25]  V. Romanovsky,et al.  Numerical Modeling of Spatial Permafrost Dynamics in Alaska , 2008 .

[26]  Howard E. Epstein,et al.  Active‐Layer Hydrology in Nonsorted Circle Ecosystems of the Arctic Tundra , 2007 .

[27]  S. Gruber,et al.  A mass‐conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models , 2007 .

[28]  C. Voss,et al.  Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs , 2007 .

[29]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[30]  John W. Pomeroy,et al.  Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments , 2006 .

[31]  Moawwad E. A. El-Mikkawy,et al.  Inversion of general tridiagonal matrices , 2006, Appl. Math. Lett..

[32]  Bettina Schaefli,et al.  Assessment of climate‐change impacts on alpine discharge regimes with climate model uncertainty , 2006 .

[33]  M. Zappa,et al.  ALPINE3D: a detailed model of mountain surface processes and its application to snow hydrology , 2006 .

[34]  Giacomo Bertoldi,et al.  Impact of Watershed Geomorphic Characteristics on the Energy and Water Budgets , 2006 .

[35]  R. Rigon,et al.  GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets , 2006 .

[36]  M. Worster,et al.  Premelting Dynamics , 2006 .

[37]  David C. Garen,et al.  Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results , 2005 .

[38]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[39]  P. Arp,et al.  Modeling soil thermal conductivities over a wide range of conditions , 2005 .

[40]  Giacomo Bertoldi,et al.  The GEOTOP snow module , 2004 .

[41]  G. Liston,et al.  A meteorological distribution system for high-resolution terrestrial modeling (MicroMet) , 2004 .

[42]  Kelly Elder,et al.  A Distributed Snow-Evolution Modeling System (SnowModel) , 2004 .

[43]  E. Vivoni,et al.  Catchment hydrologic response with a fully distributed triangulated irregular network model , 2004 .

[44]  Stephan Gruber,et al.  Rock‐wall temperatures in the Alps: modelling their topographic distribution and regional differences , 2004 .

[45]  Masaru Mizoguchi,et al.  Water Flow and Heat Transport in Frozen Soil , 2004 .

[46]  P. Huyakorn,et al.  A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow , 2004 .

[47]  Peter E. Thornton,et al.  Technical Description of the Community Land Model (CLM) , 2004 .

[48]  Regine Hock,et al.  Temperature index melt modelling in mountain areas , 2003 .

[49]  Philippe Cosenza,et al.  Relationship between thermal conductivity and water content of soils using numerical modelling , 2003 .

[50]  Stephan Gruber,et al.  Surface Temperatures in Steep Alpine Rock Faces-A Strategy for Regional-Scale , 2003 .

[51]  K. Loague,et al.  Hydrologic‐Response simulations for the R‐5 catchment with a comprehensive physics‐based model , 2001 .

[52]  J. Ihringer,et al.  Modeling water flow and mass transport in a loess catchment , 2001 .

[53]  L. Kuchment,et al.  A distributed model of runoff generation in the permafrost regions , 2000 .

[54]  L. Hinzman,et al.  Development and application of a spatially-distributed Arctic hydrological and thermal process model (ARHYTHM) , 2000 .

[55]  B. Denby,et al.  The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds , 2000, Journal of Glaciology.

[56]  P. Wagnon,et al.  Energy balance and runoff seasonality of a Bolivian glacier , 1999 .

[57]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[58]  T. M. Crawford,et al.  An Improved Parameterization for Estimating Effective Atmospheric Emissivity for Use in Calculating Daytime Downwelling Longwave Radiation , 1999 .

[59]  L. Hinzman,et al.  A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions , 1998 .

[60]  A. C. Dilley,et al.  Estimating downward clear sky long‐wave irradiance at the surface from screen temperature and precipitable water , 1998 .

[61]  W. C. Snyder,et al.  Classification-based emissivity for land surface temperature measurement from space , 1998 .

[62]  A. Meesters,et al.  Turbulence Observations Above a Smooth Melting Surface on the Greenland Ice Sheet , 1997 .

[63]  Peter E. Thornton,et al.  Generating surfaces of daily meteorological variables over large regions of complex terrain , 1997 .

[64]  M. König,et al.  The thermal conductivity of seasonal snow , 1997, Journal of Glaciology.

[65]  A. Prata A new long‐wave formula for estimating downward clear‐sky radiation at the surface , 1996 .

[66]  E. Sudicky,et al.  Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media , 1996 .

[67]  J. Baker,et al.  The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic , 1996 .

[68]  C. Ray Some Numerical Experiments on the Variably-Saturated Flow Equation , 1996 .

[69]  Utah Energy Balance Snow Accumulation and Melt Model (UEB) , 1996 .

[70]  Mario Putti,et al.  A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems , 1994 .

[71]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[72]  Edwin A. Henneken,et al.  Parameterization of global and longwave incoming radiation for the Greenland Ice Sheet , 1994 .

[73]  R. Pielke,et al.  Atmospheric parameterization of evaporation from non-plant-covered surfaces , 1993 .

[74]  D. Gray,et al.  The Prairie Blowing Snow Model: characteristics, validation, operation , 1993 .

[75]  G. Gottardi,et al.  A control-volume finite-element model for two-dimensional overland flow , 1993 .

[76]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[77]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[78]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[79]  E. Brun,et al.  A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting , 1992, Journal of Glaciology.

[80]  R. Jordan A One-dimensional temperature model for a snow cover : technical documentation for SNTHERM.89 , 1991 .

[81]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[82]  P. E. O'connell,et al.  An introduction to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system , 1986 .

[83]  H. Panofsky,et al.  Atmospheric Turbulence: Models and Methods for Engineering Applications , 1984 .

[84]  H. Niessner,et al.  On computing the inverse of a sparse matrix , 1983 .

[85]  T. Meyers,et al.  Predicting Daily Insolation with Hourly Cloud Height and Coverage , 1983 .

[86]  M. Iqbal An introduction to solar radiation , 1983 .

[87]  J. Duffie,et al.  Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation , 1982 .

[88]  Y. Yen Review of Thermal Properties of Snow, Ice and Sea Ice, , 1981 .

[89]  S. Idso A set of equations for full spectrum and 8- to 14-μm and 10.5- to 12.5-μm thermal radiation from cloudless skies , 1981 .

[90]  J. Schieldge,et al.  Anomalous behavior of the atmospheric surface layer over a melting snowpack , 1981 .

[91]  Virgil J. Lunardini,et al.  Heat transfer in cold climates , 1981 .

[92]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[93]  Donald R. Satterlund,et al.  An improved equation for estimating long‐wave radiation from the atmosphere , 1979 .

[94]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[95]  B. C. Ryan A Mathematical Model for Diagnosis and Prediction of Surface Winds in Mountainous Terrain. , 1977 .

[96]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[97]  W. Brutsaert On a derivable formula for long-wave radiation from clear skies , 1975 .

[98]  Wilfried Brutsaert,et al.  A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level , 1975 .

[99]  E. Anderson,et al.  A point energy and mass balance model of a snow cover , 1975 .

[100]  A. H. Auer The Rain versus Snow Threshold Temperatures , 1974 .

[101]  P. S. Brown,et al.  Numerical Computations of the Latitudinal Variation of Solar Radiation for an Atmosphere of Varying Opacity , 1974 .

[102]  A. Casinière Heat exchange over a melting snow surface , 1974 .

[103]  S. Colbeck,et al.  A Theory of Water Percolation in Snow , 1972, Journal of Glaciology.

[104]  Hiromu Shimizu,et al.  Air Permeability of Deposited Snow , 1970 .

[105]  R. Freeze,et al.  Blueprint for a physically-based, digitally-simulated hydrologic response model , 1969 .

[106]  R. D. Miller,et al.  Soil Freezing and Soil Water Characteristic Curves , 1966 .

[107]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[108]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .

[109]  J. E. McDonald,et al.  DIRECT ABSORPTION OF SOLAR RADIATION BY ATMOSPHERIC WATER VAPOR , 1960 .

[110]  Henry G. Houghton,et al.  ON THE ANNUAL HEAT BALANCE OF THE NORTHERN HEMISPHERE , 1954 .

[111]  A. Gemant The Thermal Conductivity of Soils , 1950 .

[112]  George R. Blake,et al.  Thermal Properties of Soils , 1950 .