CMOS-compatible a-Si metalenses on a 12-inch glass wafer for fingerprint imaging

Abstract Metalenses made of artificial sub-wavelength nanostructures have shown the capability of light focusing and imaging with a miniaturized size. Here, we report the demonstration of mass-producible amorphous silicon metalenses on a 12-inch glass wafer via the complementary metal-oxide-semiconductor compatible process. The measured numerical aperture of the fabricated metalens is 0.496 with a focusing spot size of 1.26 μm at the wavelength of 940 nm. The metalens is applied in an imaging system to test the imaging resolution. The minimum bar of the resolution chart with a width of 2.19 μm is clearly observed. Furthermore, the same system demonstrates the imaging of a fingerprint, and proofs the concept of using metalens array to reduce the system size for future compact consumer electronics.

[1]  Y. Gu,et al.  Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform , 2019 .

[2]  Keng Heng Lai,et al.  Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation , 2019, Nanophotonics.

[3]  Keng Heng Lai,et al.  CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. , 2019, Optics express.

[4]  Nanxi Li,et al.  1550nm-Wavelength Metalens Demonstrated on 12-Inch Si CMOS Platform , 2019, 2019 IEEE 16th International Conference on Group IV Photonics (GFP).

[5]  Nanxi Li,et al.  Embedded Dielectric Metasurface Based Subtractive Color Filter on a 300mm Glass Wafer , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[6]  Kerolos M. A. Yousef,et al.  Large-Area, Single Material Metalens in the Visible: An Approach for Mass-Production Using Conventional Semiconductor Manufacturing Techniques , 2019, 2019 Conference on Lasers and Electro-Optics (CLEO).

[7]  Ting Xu,et al.  Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. , 2019, Optics express.

[8]  Ping Yang,et al.  Near-infrared tunable metalens based on phase change material Ge2Se2Te5 , 2019, Scientific Reports.

[9]  Q. Mu,et al.  Compact compound-eye imaging module based on the phase diffractive microlens array for biometric fingerprint capturing. , 2019, Optics express.

[10]  Yuandong Gu,et al.  Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer. , 2018, Optics express.

[11]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[12]  Federico Capasso,et al.  Large area metalenses: design, characterization, and mass manufacturing. , 2018, Optics express.

[13]  Ye Feng Yu,et al.  A Metalens with a Near-Unity Numerical Aperture. , 2017, Nano letters.

[14]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[15]  Federico Capasso,et al.  Metalenses: Versatile multifunctional photonic components , 2017, Science.

[16]  Din Ping Tsai,et al.  GaN Metalens for Pixel-Level Full-Color Routing at Visible Light. , 2017, Nano letters.

[17]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[18]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[19]  Tal Ellenbogen,et al.  Composite functional metasurfaces for multispectral achromatic optics , 2016, Nature Communications.

[20]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.

[21]  F. Capasso,et al.  Multispectral Chiral Imaging with a Metalens. , 2016, Nano letters.

[22]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[23]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[24]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[25]  Arka Majumdar,et al.  Low contrast dielectric metasurface optics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[26]  Federico Capasso,et al.  Achromatic Metasurface Lens at Telecommunication Wavelengths. , 2015, Nano letters.

[27]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[28]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[29]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[30]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[31]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.