Thermo-hydraulic characterization of a louvered fin and flat tube heat exchanger

Abstract In the present study, a whole heat exchanger with a hydraulic diameter of 2.3 mm is tested, which is a minichannel heat exchanger according to the Kandlikar classification. This is a louvered fin and flat tube heat exchanger currently used in car cooling systems, also known as radiator. A glycol–water mixture (60/40 in volume) circulates through the tubes at flows ranging from 100 to 7800 l/h and at a supply temperature of 90 °C. This fluid is cooled with ambient air at a temperature of 20 °C and at frontal air velocities varying between 0.5 and 7 m/s. The thermohydraulic performance of the heat exchanger is compared with the classical correlations given in the literature for the heat transfer and the friction factor calculation. On the glycol–water side the heat exchanger is characterized for Reynolds numbers from 30 to 8000. A first comparison is carried out with the correlations available in the literature with a purely predictive model by obtaining a predictive value with a systematic under prediction lower than 10%. In a second step a semi-empirical model is considered to identify the experimental heat transfer coefficients for this application.