Infrared polarization signatures for targets

Based upon known surface optical properties, we develop a model to calculate and analyze the linear and circular polarization signatures for targets of known geometric shapes. The linear and circular polarization radiation (emission and reflection) generated from the target surfaces are studied in two model surface structures: metallic and non-metallic substrates with/without dielectric coating. Infrared I, Q, U, and V images of a model cylindrical target with these surfaces are calculated. This paper shows that dielectric coating enhances the power of generating circular polarization radiation. In addition to the linear polarization, circular polarization imaging attributable to target surface reflection is also shown to be feasible for practical application.