Modeling and Optimization Algorithms in Rapid Prototyping, Submerged Arc Welding, and Turning

[1]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[2]  Shinn-Ying Ho,et al.  Intelligent evolutionary algorithms for large parameter optimization problems , 2004, IEEE Trans. Evol. Comput..

[3]  Caro Lucas,et al.  A novel numerical optimization algorithm inspired from weed colonization , 2006, Ecol. Informatics.

[4]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[5]  L. Vijayaraghavan,et al.  Investigation and optimization of lubrication parameters in high speed turning of superalloy Inconel 718 , 2010 .

[6]  John Edwin Raja Dhas,et al.  Optimization of parameters of submerged arc weld using non conventional techniques , 2011, Appl. Soft Comput..

[7]  Syed H. Masood,et al.  Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling , 2011 .

[8]  Ajith Abraham,et al.  Inertia Weight strategies in Particle Swarm Optimization , 2011, 2011 Third World Congress on Nature and Biologically Inspired Computing.

[9]  S. Dominiak,et al.  Dry machining of Inconel 718, workpiece surface integrity , 2011 .

[10]  R. Venkata Rao,et al.  Parameter Optimization of Machining Processes Using a New Optimization Algorithm , 2012 .

[11]  Mohsen Badrossamay,et al.  Topology Optimization for Fused Deposition Modeling Process , 2013 .

[12]  Vladimir Pucovsky,et al.  Application of fuzzy logic and regression analysis for modeling surface roughness in face milliing , 2013, J. Intell. Manuf..

[13]  Giorgio Olmi,et al.  Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30 , 2013 .

[14]  Gautam Majumdar,et al.  Optimization of bead geometry of submerged arc weld using fuzzy based desirability function approach , 2013, J. Intell. Manuf..

[15]  Godfrey C. Onwubolu,et al.  Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE) , 2014 .

[16]  Enrico Zio,et al.  Invasive weed classification , 2015, Neural Computing and Applications.

[17]  Halil Karakoç,et al.  Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters , 2017, Neural Computing and Applications.

[18]  Padmavathi Kora,et al.  Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block , 2015, SpringerPlus.

[19]  R. Keshavamurthy,et al.  Studies on Parametric Optimization for Fused Deposition Modelling Process , 2015 .

[20]  Xuejun Li,et al.  A quantitative estimation technique for welding quality using local mean decomposition and support vector machine , 2016, J. Intell. Manuf..

[21]  Chil-Chyuan Kuo,et al.  Development of a Precision Surface Polishing System for Parts Fabricated by Fused Deposition Modeling , 2016 .

[22]  Sunpreet Singh,et al.  Study on Tribological Properties of Al–Al2O3 Composites Prepared Through FDMAIC Route Using Reinforced Sacrificial Patterns , 2016 .

[23]  Mozammel Mia,et al.  Response surface and neural network based predictive models of cutting temperature in hard turning , 2016, Journal of advanced research.

[24]  Murat Sarikaya,et al.  Optimization and predictive modeling using S/N, RSM, RA and ANNs for micro-electrical discharge drilling of AISI 304 stainless steel , 2016, Neural Computing and Applications.

[25]  Domenico Umbrello,et al.  Experimental Investigation to Optimize Tool Life and Surface Roughness in Inconel 718 Machining , 2016 .

[26]  Vishal S. Sharma,et al.  Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques , 2016 .

[27]  Vishal S. Sharma,et al.  Machining Parameters Optimization of Titanium Alloy using Response Surface Methodology and Particle Swarm Optimization under Minimum-Quantity Lubrication Environment , 2016 .

[28]  Mozammel Mia,et al.  Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition , 2017, Neural Computing and Applications.

[29]  Mozammel Mia,et al.  Mono-objective and multi-objective optimization of performance parameters in high pressure coolant assisted turning of Ti-6Al-4V , 2017 .

[30]  Tarek I. Zohdi,et al.  Computational modeling of electrically-driven deposition of ionized polydisperse particulate powder mixtures in advanced manufacturing processes , 2017, Journal of Computational Physics.

[31]  Junxue Ren,et al.  Multi-objective optimization of multi-axis ball-end milling Inconel 718 via grey relational analysis coupled with RBF neural network and PSO algorithm , 2017 .

[32]  Mozammel Mia,et al.  Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool , 2017 .

[33]  M. K. Tripathi,et al.  Evolutionary intelligence in design and synthesis of bulk metallic glasses by mechanical alloying , 2017 .

[34]  R. Venkata Rao,et al.  Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm , 2017 .

[35]  M. Gupta,et al.  Machining comparison of aerospace materials considering minimum quantity cutting fluid: A clean and green approach , 2017 .

[36]  Yogesh Deshpande,et al.  Estimation of surface roughness using cutting parameters, force, sound, and vibration in turning of Inconel 718 , 2017 .

[37]  Qiang Zhang,et al.  Optimization design and reality of the virtual cutting process for the boring bar based on PSO-BP neural networks , 2018, Neural Computing and Applications.

[38]  Farbod Akhavan Niaki,et al.  A comprehensive study on the effects of tool wear on surface roughness, dimensional integrity and residual stress in turning IN718 hard-to-machine alloy , 2017 .

[39]  Munish Kumar Gupta,et al.  Towards zero waste manufacturing: A multidisciplinary review , 2017 .

[40]  N. R. Dhar,et al.  Effect of time-controlled MQL pulsing on surface roughness in hard turning by statistical analysis and artificial neural network , 2017 .

[41]  Mozammel Mia,et al.  Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel , 2018 .

[42]  Mozammel Mia,et al.  Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques , 2018, The International Journal of Advanced Manufacturing Technology.

[43]  Marcos Mesquita da Silva,et al.  Optimization of submerged arc welding process parameters for overlay welding , 2018 .

[44]  Mozammel Mia,et al.  Modeling of Surface Roughness Using RSM, FL and SA in Dry Hard Turning , 2018 .

[45]  E. Budak,et al.  Investigation of machinability in turning of difficult-to-cut materials using a new cryogenic cooling approach , 2018 .