Solitons in Ideal Optical Fibers - A Numerical Development

This work developed a numerical procedure for a system of partial differential equations (PDEs) describing the propagation of solitons in ideal optical fibers. The validation of the procedure was implemented from the numerical comparison between the known analytical solutions of the PDEs system and those obtained by using the numerical procedure developed. It was discovered that the procedure, based on the finite difference method and relaxation Gauss-Seidel method, was adequate in describing the propagation of soliton waves in ideals optical fibers.

[1]  Neyva Maria Lopes Romeiro,et al.  Determinação do parâmetro de relaxação ótimo num procedimento numérico de propagação de sólitons , 2010 .

[2]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[3]  B. Malomed,et al.  Transmission of return-to-zero pulses in an optical split-step system based on reflecting fiber gratings , 2009 .

[4]  B. Malomed,et al.  Stabilization of spatiotemporal solitons in second-harmonic-generating media , 2009 .

[5]  Xueming Liu,et al.  Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber , 2009 .

[6]  H. Tam,et al.  Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser. , 2008, Optics letters.

[7]  D. Tang,et al.  Observation of high-order polarization-locked vector solitons in a fiber laser. , 2008, Physical review letters.

[8]  M. S. Ismail Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method , 2008, Math. Comput. Simul..

[9]  F. Mitschke,et al.  Solitons in lossy fibers , 2007 .

[10]  J. Kahn,et al.  Signal Design and Detection in Presence of Nonlinear Phase Noise , 2007, Journal of Lightwave Technology.

[11]  Sofia C. V. Latas,et al.  Stable soliton propagation with self-frequency shift , 2007, Math. Comput. Simul..

[12]  B. Malomed,et al.  Soliton stability against polarization-mode-dispersion in the split-step system , 2007 .

[13]  K. Nakajima,et al.  10-GHz 0.5-ps Pulse Generation in 1000-nm Band in PCF for High-Speed Optical Communication , 2007, Journal of Lightwave Technology.

[14]  A.N. Pilipetskii,et al.  High-capacity undersea long-haul systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  K. Nakajima,et al.  10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[16]  Hanquan Wang,et al.  Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations , 2005, Appl. Math. Comput..

[17]  J. R. Taylor,et al.  Optical Solitons: Theory and Experiment , 2005 .

[18]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[19]  M. S. Ismail,et al.  Highly accurate finite difference method for coupled nonlinear Schrödinger equation , 2004, Int. J. Comput. Math..

[20]  Paulo Laerte Natti,et al.  Ondas do tipo sóliton em guias dielétricos , 2003 .

[21]  Yuri S. Kivshar,et al.  Massive WDM and TDM soliton transmission systems: a ROSC symposium , 2002 .

[22]  Srikanth Raghavan,et al.  Spatiotemporal solitons in inhomogeneous nonlinear media , 2000 .

[23]  L. Torner,et al.  Dynamics of quadratic soliton excitation , 1999 .

[24]  F. Favre,et al.  Narrow band 1.02 Tbit/s (51/spl times/20 Gbit/s) soliton DWDM transmission over 1000 km of standard fiber with 100 km amplifier spans , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[25]  İdris Dağ,et al.  A quadratic B-spline finite element method for solving nonlinear Schrödinger equation , 1999 .

[26]  Yijiang Chen,et al.  Stability of fundamental solitons of coupled nonlinear Schrödinger equations , 1998 .

[27]  Curtis R. Menyuk,et al.  Solitary waves due to ?^(2): ?^(2) cascading , 1994 .

[28]  Peter D. Drummond,et al.  Simulton solutions for the parametric amplifier , 1993 .

[29]  L. Mollenauer,et al.  Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14000 km , 1991 .

[30]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[31]  L. Mollenauer,et al.  Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. , 1988, Optics letters.

[32]  Philippe Emplit,et al.  Picosecond steps and dark pulses through nonlinear single mode fibers , 1987 .

[33]  C. Menyuk Nonlinear pulse propagation in birefringent optical fibers , 1987 .

[34]  A. Hasegawa,et al.  Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process. , 1984, Applied optics.

[35]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers , 1981 .

[36]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[37]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[38]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[39]  Neyva Maria Lopes Romeiro,et al.  Determinação do parâmetro de relaxação ótimo num procedimento numérico de propagação de sólitons , 2010 .

[40]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[41]  B. Malomed,et al.  Transmission of return-to-zero pulses in an optical split-step system based on reflecting fiber gratings , 2009 .

[42]  B. Malomed,et al.  Stabilization of spatiotemporal solitons in second-harmonic-generating media , 2009 .

[43]  Xueming Liu,et al.  Adaptive higher-order split-step Fourier algorithm for simulating lightwave propagation in optical fiber , 2009 .

[44]  H. Tam,et al.  Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser. , 2008, Optics letters.

[45]  D. Tang,et al.  Observation of high-order polarization-locked vector solitons in a fiber laser. , 2008, Physical review letters.

[46]  M. S. Ismail Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method , 2008, Math. Comput. Simul..

[47]  F. Mitschke,et al.  Solitons in lossy fibers , 2007 .

[48]  J. Kahn,et al.  Signal Design and Detection in Presence of Nonlinear Phase Noise , 2007, Journal of Lightwave Technology.

[49]  Sofia C. V. Latas,et al.  Stable soliton propagation with self-frequency shift , 2007, Math. Comput. Simul..

[50]  B. Malomed,et al.  Soliton stability against polarization-mode-dispersion in the split-step system , 2007 .

[51]  A.N. Pilipetskii,et al.  High-capacity undersea long-haul systems , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[52]  K. Nakajima,et al.  10 GHz 0.5 ps pulse generation in 1000 nm band in PCF for high speed optical communication , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[53]  B. Malomed,et al.  Spatiotemporal optical solitons , 2005 .

[54]  Paulo Laerte Natti,et al.  Ondas do tipo sóliton em guias dielétricos , 2003 .

[55]  Yuri S. Kivshar,et al.  Massive WDM and TDM soliton transmission systems: a ROSC symposium , 2002 .

[56]  Srikanth Raghavan,et al.  Spatiotemporal solitons in inhomogeneous nonlinear media , 2000 .

[57]  L. Torner,et al.  Dynamics of quadratic soliton excitation , 1999 .

[58]  F. Favre,et al.  Narrow band 1.02 Tbit/s (51/spl times/20 Gbit/s) soliton DWDM transmission over 1000 km of standard fiber with 100 km amplifier spans , 1999, OFC/IOOC . Technical Digest. Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication.

[59]  İdris Dağ,et al.  A quadratic B-spline finite element method for solving nonlinear Schrödinger equation , 1999 .

[60]  Yijiang Chen,et al.  Stability of fundamental solitons of coupled nonlinear Schrödinger equations , 1998 .

[61]  Curtis R. Menyuk,et al.  Solitary waves due to ?^(2): ?^(2) cascading , 1994 .

[62]  Peter D. Drummond,et al.  Simulton solutions for the parametric amplifier , 1993 .

[63]  L. Mollenauer,et al.  Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14000 km , 1991 .

[64]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[65]  L. Mollenauer,et al.  Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain. , 1988, Optics letters.

[66]  Philippe Emplit,et al.  Picosecond steps and dark pulses through nonlinear single mode fibers , 1987 .

[67]  C. Menyuk Nonlinear pulse propagation in birefringent optical fibers , 1987 .

[68]  A. Hasegawa,et al.  Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process. , 1984, Applied optics.

[69]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers , 1981 .

[70]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[71]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .