Size-aware visual object tracking via dynamic fusion of correlation filter-based part regressors

Abstract Although correlation filter (CF)-based trackers have shown promising results in addressing problematic challenges of visual tracking, common holistic-wise CF-based trackers mostly drift away from the target object when undergoing partial occlusion. On the other hand, part-based models provide a prosperous basis for handling occlusion problem, due to preserving local structure of the target object. Employing local-global appearance models of the object, we propose a robust tracking algorithm based on the weighted cumulative fusion of CF-based part regressors. Indeed, we dynamically learn importance weights of each part via a multilinear ridge regression optimization model aiming at enhancing discrimination power of our tracker. To alleviate tracking drift caused by the object size changes, we further present an accurate method that jointly estimates object scale and aspect ratio by analyzing relative deformation cost of importance pair-wise parts. Also, to reduce the computational complexity, we introduce a feature sharing strategy for all constituent parts. Extensive experiments on OTB-2013, OTB-50, OTB-100, and VOT2016 datasets demonstrate that our tracker not only impressively enhances the performance of target-wise KCF tracker as its baseline but also performs favorably against state-of-the-art trackers in terms of qualitative and quantitative measures while running about 30 fps using Matlab on 3.2 GHz core-i5.

[1]  Michael Felsberg,et al.  Accurate Scale Estimation for Robust Visual Tracking , 2014, BMVC.

[2]  Gang Wang,et al.  Part-based Tracking via Discriminative Correlation Filters , 2017 .

[3]  Thomas Mauthner,et al.  In defense of color-based model-free tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  Hang Li,et al.  Patch-based Scale Calculation for Real-time Visual Tracking , 2016, IEEE Signal Processing Letters.

[7]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[8]  Changsheng Xu,et al.  Learning Multi-Task Correlation Particle Filters for Visual Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Qingshan Liu,et al.  Complementary Tracking via Dual Color Clustering and Spatio-Temporal Regularized Correlation Learning , 2018, IEEE Access.

[10]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[11]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Wenbing Tao,et al.  Visual object tracking via enhanced structural correlation filter , 2017, Inf. Sci..

[13]  Isabelle Bloch,et al.  Fragments based tracking with adaptive cue integration , 2012, Comput. Vis. Image Underst..

[14]  Yunsong Li,et al.  Improved kernelized correlation filter tracking by using spatial regularization , 2018, J. Vis. Commun. Image Represent..

[15]  Jiri Matas,et al.  Discriminative Correlation Filter with Channel and Spatial Reliability , 2017, CVPR.

[16]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Qingshan Liu,et al.  Robust object tracking by online Fisher discrimination boosting feature selection , 2016, Comput. Vis. Image Underst..

[19]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Wei Chen,et al.  Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble , 2016, Neurocomputing.

[22]  Ales Leonardis,et al.  Robust Visual Tracking Using an Adaptive Coupled-Layer Visual Model , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  David Zhang,et al.  Fast Tracking via Spatio-Temporal Context Learning , 2013, ArXiv.

[24]  Huchuan Lu,et al.  Tracking With Static and Dynamic Structured Correlation Filters , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Li Zhang,et al.  Correlation Filter Learning Toward Peak Strength for Visual Tracking , 2018, IEEE Transactions on Cybernetics.

[26]  Ming-Hsuan Yang,et al.  Robust Visual Tracking via Hierarchical Convolutional Features , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Rynson W. H. Lau,et al.  CREST: Convolutional Residual Learning for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[28]  Robert Laganière,et al.  Scalable Kernel Correlation Filter with Sparse Feature Integration , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[29]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Changsheng Xu,et al.  Structural Correlation Filter for Robust Visual Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Rongrong Ji,et al.  Robust tracking via patch-based appearance model and local background estimation , 2014, Neurocomputing.

[32]  Yuhui Zheng,et al.  Robust visual tracking via self-similarity learning , 2017 .

[33]  Matej Kristan,et al.  Deformable Parts Correlation Filters for Robust Visual Tracking , 2016, IEEE Transactions on Cybernetics.

[34]  Jiri Matas,et al.  Discriminative Correlation Filter Tracker with Channel and Spatial Reliability , 2016, International Journal of Computer Vision.

[35]  Andrea Cavallaro,et al.  Multi-Tracker Partition Fusion , 2017, IEEE Transactions on Circuits and Systems for Video Technology.

[36]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[37]  Jungong Han,et al.  Real-Time Scalable Visual Tracking via Quadrangle Kernelized Correlation Filters , 2018, IEEE Transactions on Intelligent Transportation Systems.

[38]  Wenguan Wang,et al.  Occlusion-Aware Real-Time Object Tracking , 2017, IEEE Transactions on Multimedia.

[39]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Qingshan Liu,et al.  Parallel Attentive Correlation Tracking , 2019, IEEE Transactions on Image Processing.

[42]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[43]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[44]  Andrea Cavallaro,et al.  Accepted for Publication in Ieee Transactions on Image Processing Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation , 2022 .

[45]  A. Aydın Alatan,et al.  Good Features to Correlate for Visual Tracking , 2017, IEEE Transactions on Image Processing.

[46]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[47]  Qingshan Liu,et al.  Visual Tracking via Boolean Map Representations , 2016, Pattern Recognit..

[48]  Changsheng Xu,et al.  Robust Structural Sparse Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Vibhav Vineet,et al.  Struck: Structured Output Tracking with Kernels , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Yang Wang,et al.  Adaptive multifeature visual tracking in a probability-hypothesis-density filtering framework , 2013, Signal Process..

[51]  Wangsheng Yu,et al.  Robust occlusion-aware part-based visual tracking with object scale adaptation , 2018, Pattern Recognit..

[52]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Changsheng Xu,et al.  P2T: Part-to-Target Tracking via Deep Regression Learning , 2018, IEEE Transactions on Image Processing.

[54]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[55]  Qingshan Liu,et al.  Visual tracking using spatio-temporally nonlocally regularized correlation filter , 2018, Pattern Recognit..

[56]  Roman P. Pflugfelder,et al.  Clustering of static-adaptive correspondences for deformable object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Lei Luo,et al.  Applying Detection Proposals to Visual Tracking for Scale and Aspect Ratio Adaptability , 2016, International Journal of Computer Vision.

[59]  Bo Du,et al.  Real-time tracking based on weighted compressive tracking and a cognitive memory model , 2017, Signal Process..

[60]  Aykut Erdem,et al.  Deformable part-based tracking by coupled global and local correlation filters , 2016, J. Vis. Commun. Image Represent..

[61]  Jiri Matas,et al.  The Enhanced Flock of Trackers , 2014, Registration and Recognition in Images and Videos.

[62]  Bernard Ghanem,et al.  Context-Aware Correlation Filter Tracking , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).