Denoising Hyperspectral Imagery and Recovering Junk Bands using Wavelets and Sparse Approximation
暂无分享,去创建一个
[1] Douglas L. Jones,et al. Wavelet-based hyperspectral image estimation , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).
[2] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[3] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[4] Martin Vetterli,et al. Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..
[5] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[6] Jelena Kovacevic,et al. Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.
[7] Dmitry M. Malioutov,et al. A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.
[8] Sinthop Kaewpijit,et al. A wavelet-based PCA reduction for hyperspectral imagery , 2002, IEEE International Geoscience and Remote Sensing Symposium.
[9] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[10] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[11] S. Mallat,et al. Adaptive greedy approximations , 1997 .
[12] C. A. Shah,et al. Some recent results on hyperspectral image classification , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.