Revisiting zinc passivation in alkaline solutions

Abstract Passive films nominally consist of an inner compact oxide and the outer precipitated layer. In the case of zinc (Zn), the outer layer is mainly precipitated ZnO/Zn(OH) 2 . Electrolyte pH controls the stability of the outer precipitated layer. In a pH 13 solution, formation of soluble Zn(OH) 3 − and Zn(OH) 4 2− phases render the precipitated layer unstable increasing zinc corrosion, whereas at pH 12, the precipitated layer (ZnO/Zn(OH) 2 ) is more stable making it an effective anodic barrier upon zinc. These precipitated oxides formed at pH 12 support cathodic reactions on their surface which in turn catalyse further oxide growth by a cathodically driven process. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to support some of the electrochemical assertions, revealing the form and morphology of the passive layers that grow upon zinc exposed to alkaline solutions.

[1]  G. Brunoro,et al.  Characterization of the corrosion or anodic oxidation products on zinc , 1975 .

[2]  M. Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers. II, Experimental results , 1990 .

[3]  A. W. Hassel,et al.  Electrochemical characterizations of precipitates formed on zinc in alkaline sulphate solution with increasing pH values , 2004 .

[4]  Su-Moon Park,et al.  Zinc Oxidation in Dilute Alkaline Solutions Studied by Real-Time Electrochemical Impedance Spectroscopy , 2012 .

[5]  Ga-Won Lee,et al.  Interaction of zinc interstitial with oxygen vacancy in zinc oxide: An origin of n-type doping , 2012 .

[6]  D. Macdonald,et al.  Characterization of the Passive State on Zinc , 1998 .

[7]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[8]  X. Zhang,et al.  Corrosion and electrochemistry of zinc , 1996 .

[9]  P. Volovitch,et al.  The anodic dissolution of zinc and zinc alloys in alkaline solution. I. Oxide formation on electrogalvanized steel , 2010 .

[10]  A. Janotti,et al.  Oxygen vacancies in ZnO , 2005 .

[11]  K. Boto,et al.  Rotating disc electrode studies of zinc corrosion , 1977 .

[12]  G. Glass,et al.  The corrosion behaviour of the zinc-mild steel galvanic cell in hot sodium bicarbonate solution , 1985 .

[13]  I. Cole,et al.  Products Formed during the Interaction of Seawater Droplets with Zinc Surfaces II. Results from Short Exposures , 2010 .

[14]  Ivan S. Cole,et al.  Corrosion of Zinc as a Function of pH , 2012 .

[15]  R. Grauer,et al.  Thermodynamische und morphologischeaspekte der korrosion in trinkwasserähnlichen lösungen—II. Cadmium in hydrogencarbonatlösungen bei temperaturen von 25 bis 80°C , 1970 .

[16]  I. Cole,et al.  Pre-treatment of Zn surfaces for droplet corrosion studies , 2010 .

[17]  D. Worsley,et al.  The kinetics and mechanism of cathodic oxygen reduction on zinc and zinc–aluminium alloy galvanized coatings , 2005 .

[18]  G. D. Watkins,et al.  Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO , 2005 .

[19]  G. D. Watkins,et al.  Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K , 2005 .

[20]  N. Birbilis,et al.  Self-repairing oxides to protect zinc: Review, discussion and prospects , 2013 .

[21]  K. Hagemark Defect structure of Zn-doped ZnO , 1976 .

[22]  A. Janotti,et al.  Hydrogen multicentre bonds. , 2007, Nature materials.

[23]  I. Cole,et al.  Corrosion under a porous layer: A porous electrode model and its implications for self-repair , 2011 .

[24]  M. Breiter,et al.  The Anodic Dissolution and Passivation of Zinc in Concentrated Potassium Hydroxide Solutions , 1969 .

[25]  A. Nishikata,et al.  Oxygen reduction mechanism on corroded zinc , 2005 .

[26]  C. H. Park,et al.  Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials: origin of n-type doping. , 2008, Physical review letters.

[27]  N. Birbilis,et al.  Compact Oxides Formed on Zinc during Exposure to a Single Sea-Water Droplet , 2013 .

[28]  G. Alimenti,et al.  Theoretical and experimental study of the interaction of O2 and H2O with metallic zinc--discussion of the initial step of oxide formation. , 2004, Journal of colloid and interface science.

[29]  A. Janotti,et al.  Native point defects in ZnO , 2007 .

[30]  H. Flitt,et al.  Synthesis, matching and deconstruction of polarization curves for the active corrosion of zinc in aerated near-neutral NaCl solutions , 2010 .

[31]  R. Grauer,et al.  Thermodynamische grundlagen der zinkkorrosion in carbonathaltigen lösungen , 1967 .

[32]  A. Janotti,et al.  New insights into the role of native point defects in ZnO , 2006 .

[33]  Digby D. Macdonald,et al.  The history of the Point Defect Model for the passive state: A brief review of film growth aspects , 2011 .

[34]  A. Hausmann,et al.  Sauerstofflücken als Donatoren in Zinkoxid , 1975 .

[35]  J. R. Vilche,et al.  An electrochemical impedance spectroscopy study of passive zinc and low alloyed zinc electrodes in alkaline and neutral aqueous solutions , 1991 .

[36]  L. Baugh,et al.  Passivation of zinc in concentrated alkaline solution—I. Characteristics of active dissolution prior to passivation , 1985 .

[37]  L. Sziráki,et al.  The electrochemical reduction of oxygen on zinc corrosion films in alkaline solutions , 2008 .

[38]  D. Macdonald Passivity–the key to our metals-based civilization , 1999 .

[39]  V. Walle,et al.  Hydrogen as a cause of doping in zinc oxide , 2000 .

[40]  Martin Stratmann,et al.  On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique , 1990 .

[41]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[42]  I. Cole,et al.  The influence of microstructure on surface phenomena: Rolled zinc , 2007 .