A Comparison of Artificial Viscosity, Limiters, and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear Settings

Nonlinear systems of equations demonstrate complicated regularity features that are often obfuscated by overly diffuse numerical methods. Using a discontinuous Galerkin finite element method, we study a nonlinear system of advection–diffusion–reaction equations and aspects of its regularity. For numerical regularization, we present a family of solutions consisting of: (1) a sharp, computationally efficient slope limiter, known as the BDS limiter, (2) a standard spectral filter, and (3) a novel artificial diffusion algorithm with a solution-dependent entropy sensor. We analyze these three numerical regularization methods on a classical test in order to test the strengths and weaknesses of each, and then benchmark the methods against a large application model.

[1]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[2]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[3]  Chi-Wang Shu,et al.  High-order finite volume WENO schemes for the shallow water equations with dry states , 2011 .

[4]  Joannes J. Westerink,et al.  Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations , 2006 .

[5]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[6]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[7]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[8]  Antonio Huerta,et al.  One‐dimensional shock‐capturing for high‐order discontinuous Galerkin methods , 2013 .

[9]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[10]  Clint Dawson,et al.  A Framework for Running the ADCIRC Discontinuous Galerkin Storm Surge Model on a GPU , 2011, ICCS.

[11]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[12]  Randall J. LeVeque,et al.  High-Order Wave Propagation Algorithms for Hyperbolic Systems , 2011, SIAM J. Sci. Comput..

[13]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[14]  Craig Michoski,et al.  A discontinuous Galerkin method for viscous compressible multifluids , 2009, J. Comput. Phys..

[15]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[16]  Jean-Luc Guermond,et al.  Implementation of the entropy viscosity method with the discontinuous Galerkin method , 2013 .

[17]  Clint Dawson,et al.  Time step restrictions for Runge-Kutta discontinuous Galerkin methods on triangular grids , 2008, J. Comput. Phys..

[18]  Claus-Dieter Munz,et al.  Explicit Discontinuous Galerkin methods for unsteady problems , 2012 .

[19]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[20]  Clint Dawson,et al.  Discontinuous Galerkin Methods for Modeling Hurricane Storm Surge , 2011 .

[21]  D. Arnold,et al.  Discontinuous Galerkin Methods for Elliptic Problems , 2000 .

[22]  Craig Michoski,et al.  Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors: Quiescent reactors , 2014 .

[23]  Seizo Tanaka,et al.  A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals , 2010 .

[24]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[25]  Chi-Wang Shu,et al.  Central Discontinuous Galerkin Methods on Overlapping Cells with a Nonoscillatory Hierarchical Reconstruction , 2007, SIAM J. Numer. Anal..

[26]  Dmitri Kuzmin,et al.  A parameter-free smoothness indicator for high-resolution finite element schemes , 2013 .

[27]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[28]  J. C. Dietrich,et al.  A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation , 2010 .

[29]  Steven J. Ruuth Global optimization of explicit strong-stability-preserving Runge-Kutta methods , 2005, Math. Comput..

[30]  Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems , 1998 .

[31]  J. Westerink,et al.  Dynamic p-enrichment schemes for multicomponent reactive flows , 2011, 1104.3834.

[32]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[33]  Eitan Tadmor,et al.  Adaptive Spectral Viscosity for Hyperbolic Conservation Laws , 2012, SIAM J. Sci. Comput..

[34]  Clint Dawson,et al.  Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations , 2010, J. Comput. Phys..

[35]  G. R. Shubin,et al.  An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions , 1988 .

[36]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[37]  Miloslav Feistauer,et al.  Mathematical and Computational Methods for Compressible Flow , 2003 .

[38]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[39]  Valentin Zingan Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization , 2012 .

[40]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[41]  Andreas Meister,et al.  Application of spectral filtering to discontinuous Galerkin methods on triangulations , 2012 .

[42]  J. S. Hesthaven,et al.  Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method , 2011, 1102.3190.

[43]  Ethan J. Kubatko,et al.  A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations , 2009 .

[44]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[45]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[46]  Joseph E. Flaherty,et al.  Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws , 2006 .

[47]  Clint Dawson,et al.  Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge-Kutta time discretizations , 2007, J. Comput. Phys..

[48]  Clint Dawson,et al.  A Performance Comparison of Continuous and Discontinuous Finite Element Shallow Water Models , 2009, J. Sci. Comput..

[49]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[50]  Armin Fuchs One-dimensional Systems , 2013 .

[51]  Ethan J. Kubatko,et al.  hp Discontinuous Galerkin methods for advection dominated problems in shallow water flow , 2006 .

[52]  Dmitri Kuzmin,et al.  A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..

[53]  Dmitri Kuzmin,et al.  Slope limiting for discontinuous Galerkin approximations with a possibly non‐orthogonal Taylor basis , 2013 .