Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
暂无分享,去创建一个
[1] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[2] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[3] George R. Sell,et al. Dichotomies for linear evolutionary equations in Banach spaces , 1994 .
[4] K. Masuda. On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation , 1967 .
[5] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[6] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[7] J. Serrin. On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .
[8] George R. Sell,et al. Volterra integral equations and topological dynamics , 1970 .
[9] Daniel B. Henry. Geometric Theory of Semilinear Parabolic Equations , 1989 .
[10] George R. Sell,et al. Differential equations without uniqueness and classical topological dynamics , 1973 .
[11] J. Hale,et al. Partial Differential Equations on Thin Domains , 1992 .
[12] Roger Temam,et al. Attractors for the Be´nard problem: existence and physical bounds on their fractal dimension , 1987 .
[13] Jack K. Hale,et al. Réaction-diffusion equation on thin domains , 1992 .
[14] G. Raugel,et al. Equations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale , 1989 .
[15] Wolf von Wahl,et al. The equations of Navier-Stokes and abstract parabolic equations , 1985 .
[16] George R. Sell,et al. Nonautonomous differential equations and topological dynamics. II. Limiting equations , 1967 .
[17] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[18] Y. Giga. Review: Wolf von Wahl, The equations of Navier-Stokes and abstract parabolic equations , 1988 .
[19] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[20] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[21] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[22] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[23] J. Mallet-Paret. Negatively invariant sets of compact maps and an extension of a theorem of Cartwright , 1976 .
[24] G. Komatsu. Global analyticity up to the boundary of solutions of the navier‐stokes equation , 1980 .
[25] E. Hopf,et al. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .
[26] George R. Sell,et al. NONAUTONOMOUS DIFFERENTIAL EQUATIONS AND TOPOLOGICAL DYNAMICS. I. THE BASIC THEORY , 1967 .
[27] G. Sell,et al. Lifting Properties in Skew-product Flows With Applications to Differential Equations , 1977 .
[28] Jack K. Hale,et al. A damped hyperbolic equation on thin domains , 1992 .
[29] R. Temam. Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .
[30] R. Temam. Navier-Stokes Equations , 1977 .
[31] E. Titi,et al. Invariant helical subspaces for the Navier-Stokes equations , 1990 .
[32] G. Raugel. Continuity of attractors , 1989 .
[33] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[34] R. Temam,et al. The Connection Between the Navier-Stokes Equations, Dynamical Systems, and Turbulence Theory , 1987 .
[35] Roger Temam,et al. Turbulence in Fluid Flows , 1993 .
[36] R. Temam,et al. New a priori estimates for navier-stokes equations in dimension 3 , 1981 .
[37] Monique Dauge,et al. Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .
[38] R. Temam. Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .