Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions

[1]  G. Sell,et al.  Inertial manifolds for nonlinear evolutionary equations , 1988 .

[2]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[3]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[4]  K. Masuda On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation , 1967 .

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[7]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[8]  George R. Sell,et al.  Volterra integral equations and topological dynamics , 1970 .

[9]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[10]  George R. Sell,et al.  Differential equations without uniqueness and classical topological dynamics , 1973 .

[11]  J. Hale,et al.  Partial Differential Equations on Thin Domains , 1992 .

[12]  Roger Temam,et al.  Attractors for the Be´nard problem: existence and physical bounds on their fractal dimension , 1987 .

[13]  Jack K. Hale,et al.  Réaction-diffusion equation on thin domains , 1992 .

[14]  G. Raugel,et al.  Equations de Navier-Stokes dans des domaines minces en dimension trois: régularité globale , 1989 .

[15]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[16]  George R. Sell,et al.  Nonautonomous differential equations and topological dynamics. II. Limiting equations , 1967 .

[17]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[18]  Y. Giga Review: Wolf von Wahl, The equations of Navier-Stokes and abstract parabolic equations , 1988 .

[19]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[20]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[21]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[22]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[23]  J. Mallet-Paret Negatively invariant sets of compact maps and an extension of a theorem of Cartwright , 1976 .

[24]  G. Komatsu Global analyticity up to the boundary of solutions of the navier‐stokes equation , 1980 .

[25]  E. Hopf,et al.  Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet , 1950 .

[26]  George R. Sell,et al.  NONAUTONOMOUS DIFFERENTIAL EQUATIONS AND TOPOLOGICAL DYNAMICS. I. THE BASIC THEORY , 1967 .

[27]  G. Sell,et al.  Lifting Properties in Skew-product Flows With Applications to Differential Equations , 1977 .

[28]  Jack K. Hale,et al.  A damped hyperbolic equation on thin domains , 1992 .

[29]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[30]  R. Temam Navier-Stokes Equations , 1977 .

[31]  E. Titi,et al.  Invariant helical subspaces for the Navier-Stokes equations , 1990 .

[32]  G. Raugel Continuity of attractors , 1989 .

[33]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[34]  R. Temam,et al.  The Connection Between the Navier-Stokes Equations, Dynamical Systems, and Turbulence Theory , 1987 .

[35]  Roger Temam,et al.  Turbulence in Fluid Flows , 1993 .

[36]  R. Temam,et al.  New a priori estimates for navier-stokes equations in dimension 3 , 1981 .

[37]  Monique Dauge,et al.  Stationary Stokes and Navier-Stokes systems on two-or three-dimensional domains with corners , 1989 .

[38]  R. Temam Behaviour at Time t=0 of the Solutions of Semi-Linear Evolution Equations. , 1982 .