Generalizing Koopman Theory to Allow for Inputs and Control

We develop a new generalization of Koopman operator theory that incorporates the effects of inputs and control. Koopman spectral analysis is a theoretical tool for the analysis of nonlinear dynamical systems. Moreover, Koopman is intimately connected to Dynamic Mode Decomposition (DMD), a method that discovers spatial-temporal coherent modes from data, connects local-linear analysis to nonlinear operator theory, and importantly creates an equation-free architecture allowing investigation of complex systems. In actuated systems, standard Koopman analysis and DMD are incapable of producing input-output models; moreover, the dynamics and the modes will be corrupted by external forcing. Our new theoretical developments extend Koopman operator theory to allow for systems with nonlinear input-output characteristics. We show how this generalization is rigorously connected and generalizes a recent development called Dynamic Mode Decomposition with control (DMDc). We demonstrate this new theory on nonlinear dynamical systems, including a standard Susceptible-Infectious-Recovered model with relevance to the analysis of infectious disease data with mass vaccination (actuation).

[1]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[2]  Clarence W. Rowley,et al.  A data-driven modeling framework for predicting forces and pressures on a rapidly pitching airfoil , 2015 .

[3]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[4]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[5]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[6]  Marco Forgione,et al.  Data-driven model improvement for model-based control , 2015, Autom..

[7]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[8]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[9]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[10]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[11]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[12]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  P. Rapisarda,et al.  Identification and data-driven model reduction of state-space representations of lossless and dissipative systems from noise-free data , 2011, Autom..

[15]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[16]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[17]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[18]  Peter J. Schmid,et al.  Dynamic Mode Decomposition and Proper Orthogonal Decomposition of flow in a lid-driven cylindrical cavity , 2009 .

[19]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[20]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[21]  Steven L. Brunton,et al.  Multi-Resolution Dynamic Mode Decomposition , 2015 .

[22]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[23]  P. Schmid,et al.  Low-rank and sparse dynamic mode decomposition , 2012 .

[24]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[25]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[26]  Steven L. Brunton,et al.  Compressed sensing and dynamic mode decomposition , 2016 .

[27]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[28]  Nikolaus A. Adams,et al.  Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction , 2012, Journal of Fluid Mechanics.

[29]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[30]  Clarence W. Rowley,et al.  A Kernel Approach to Data-Driven Koopman Spectral Analysis , 2014 .

[31]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[32]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[33]  Karl Johan Åström,et al.  Control: A perspective , 2014, Autom..

[34]  Wayne J. Book,et al.  Dimension reduction in a feedback loop using the SVD: Results on controllability and stability , 2013, Autom..

[35]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[36]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[37]  Bernd R. Noack,et al.  Model reduction using Dynamic Mode Decomposition , 2014 .

[38]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[39]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[40]  Peter J. Schmid,et al.  A dynamic observer to capture and control perturbation energy in noise amplifiers , 2014, Journal of Fluid Mechanics.

[41]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[42]  B. Friedman Principles and Techniques of Applied Mathematics , 1956 .

[43]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[44]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[45]  Clarence W. Rowley,et al.  Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , 2014, 1411.5424.

[46]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[47]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[48]  Ryan Mohr,et al.  Construction of eigenfunctions for scalar-type operators via Laplace averages with connections to the Koopman operator , 2014, 1403.6559.

[49]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[51]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[52]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[53]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.