Across the board: The mathematics of chessboard problems

[1]  D. Robitaille Mathematics and Chess. , 1974 .

[2]  Stan Wagon Fourteen proofs of a result about tiling a rectangle , 1987 .

[3]  J. J. Watkins,et al.  Knight's Tours on a Torus , 1997 .

[4]  Joe Roberts Lure of the Integers , 1992 .

[5]  Odile Favaron,et al.  Contributions to the theory of domination, independence and irredundance in graphs , 1981, Discret. Math..

[6]  Martin Gardner,et al.  New Mathematical Diversions , 1966 .

[7]  E. J. COCKAYNE,et al.  Chessboard domination problems , 1991, Discret. Math..

[8]  Paul J. Campbell,et al.  Gauss and the eight queens problem: A study in miniature of the propagation of historical error , 1977 .

[9]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[10]  R. Stanley,et al.  The mathematical knight , 2003 .

[11]  Robin Wilson,et al.  Graphs an Introductory Approach , 1990, The Mathematical Gazette.

[12]  D. West Introduction to Graph Theory , 1995 .

[13]  Harold Don Allen,et al.  The Zen of Magic Squares, Circles, and Stars (Book) , 2002 .

[14]  Stephen T. Hedetniemi,et al.  On the diagonal queens domination problem , 1986, J. Comb. Theory, Ser. A.

[15]  Allen J. Schwenk,et al.  Which Rectangular Chessboards Have a Knight's Tour? , 1991 .

[16]  W. Ahrens,et al.  Mathematische Unterhaltungen und Spiele , 2009 .

[17]  Martin Gardner,et al.  Mathematical puzzles of Sam Loyd , 1959 .

[18]  Jochen Harant,et al.  On Domination in Graphs , 2005, Discuss. Math. Graph Theory.

[19]  W. W. Ball,et al.  Mathematical Recreations and Essays , 1905, Nature.

[20]  M. Gardner Mathematical Magic Show , 1978 .

[21]  H. P.,et al.  Mathematical Recreations , 1944, Nature.