Galerkin formulations of isogeometric shell analysis: Alleviating locking with Greville quadratures and higher-order elements

Abstract We propose new quadrature schemes that asymptotically require only four in-plane points for Reissner–Mindlin shell elements and nine in-plane points for Kirchhoff–Love shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree p of the elements. The quadrature points are Greville abscissae associated with p th-order B-spline basis functions whose continuities depend on the specific Galerkin formulations , and the quadrature weights are calculated by solving a linear moment fitting problem in each parametric direction. The proposed shell element formulations are shown through numerical studies to be rank sufficient and to be free of spurious modes. The studies reveal comparable accuracy, in terms of both displacement and stress, compared with fully integrated spline-based shell elements, while at the same time reducing storage and computational cost associated with forming element stiffness and mass matrices and force vectors. The high accuracy with low computational cost makes the proposed quadratures along with higher-order spline bases, in particular polynomial orders , p = 5 and 6, good choices for alleviating membrane and shear locking in shells.

[1]  Alexander Düster,et al.  Numerical integration of discontinuities on arbitrary domains based on moment fitting , 2016 .

[2]  Di Miao,et al.  Bézier B̄ projection , 2017, Computer Methods in Applied Mechanics and Engineering.

[3]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[4]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[5]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[6]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[7]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[8]  Michael J. Borden,et al.  Isogeometric Bézier dual mortaring: The enriched Bézier dual basis with application to second- and fourth-order problems , 2020 .

[9]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[10]  C. Chui,et al.  Nonstationary tight wavelet frames, I: Bounded intervals , 2004 .

[11]  Wim Desmet,et al.  Isogeometric collocation for Kirchhoff-Love plates and shells , 2018 .

[12]  Thomas J. R. Hughes,et al.  Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis , 2014 .

[13]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[14]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[15]  Leopoldo Greco,et al.  A reconstructed local B̄ formulation for isogeometric Kirchhoff-Love shells , 2018 .

[16]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[17]  Sven Klinkel,et al.  A mixed shell formulation accounting for thickness strains and finite strain 3d material models , 2008 .

[18]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Habibou Maitournam,et al.  Selective and reduced numerical integrations for NURBS-based isogeometric analysis , 2015 .

[21]  Roger A. Sauer,et al.  On the theoretical foundations of thin solid and liquid shells , 2017 .

[22]  R. MacNeal,et al.  Finite Elements: Their Design and Performance , 1993 .

[23]  Giancarlo Sangalli,et al.  Fast formation of isogeometric Galerkin matrices by weighted quadrature , 2016, 1605.01238.

[24]  Dominik Schillinger,et al.  Isogeometric collocation for phase-field fracture models , 2015 .

[25]  J. F. Caseiro,et al.  On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements , 2014 .

[26]  Roger A. Sauer,et al.  A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements , 2012, ArXiv.

[27]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[28]  Ekkehard Ramm,et al.  Shell structures—a sensitive interrelation between physics and numerics , 2004 .

[29]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[30]  B. Simeon,et al.  Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors , 2013 .

[31]  E. Ramm,et al.  A unified approach for shear-locking-free triangular and rectangular shell finite elements , 2000 .

[32]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[33]  Victor M. Calo,et al.  Gaussian quadrature rules for C1 quintic splines with uniform knot vectors , 2017, J. Comput. Appl. Math..

[34]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[35]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[36]  Rachid Ait-Haddou,et al.  Explicit Gaussian quadrature rules for C1 cubic splines with symmetrically stretched knot sequences , 2015, J. Comput. Appl. Math..

[37]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[38]  Roger A. Sauer,et al.  A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries , 2017 .

[39]  Ernst Rank,et al.  Numerical integration of discontinuous functions: moment fitting and smart octree , 2017 .

[40]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[41]  E. Ramm,et al.  Shear deformable shell elements for large strains and rotations , 1997 .

[42]  Habibou Maitournam,et al.  Improved numerical integration for locking treatment in isogeometric structural elements. Part II: Plates and shells , 2015 .

[43]  Ekkehard Ramm,et al.  A variational method to avoid locking—independent of the discretization scheme , 2018 .

[44]  Ekkehard Ramm,et al.  Hierarchic isogeometric large rotation shell elements including linearized transverse shear parametrization , 2017 .

[45]  Alexander G Iosilevich,et al.  An evaluation of the MITC shell elements , 2000 .

[46]  K. Bathe,et al.  Fundamental considerations for the finite element analysis of shell structures , 1998 .

[47]  W. Dornisch,et al.  An efficient and robust rotational formulation for isogeometric Reissner–Mindlin shell elements , 2016 .

[48]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[49]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[50]  Richard W. Johnson Higher order B-spline collocation at the Greville abscissae , 2005 .

[51]  Habibou Maitournam,et al.  Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams , 2014 .

[52]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[53]  Kjetil André Johannessen,et al.  Optimal quadrature for univariate and tensor product splines , 2017 .

[54]  S. W. Lee,et al.  A new efficient approach to the formulation of mixed finite element models for structural analysis , 1986 .

[55]  Victor M. Calo,et al.  Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines , 2016, J. Comput. Appl. Math..

[56]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[57]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[58]  Thomas W. Sederberg,et al.  S-splines: A simple surface solution for IGA and CAD , 2019, Computer Methods in Applied Mechanics and Engineering.

[59]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[60]  Alain Combescure,et al.  Locking free isogeometric formulations of curved thick beams , 2012 .

[61]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[62]  R. Echter,et al.  A hierarchic family of isogeometric shell finite elements , 2013 .

[63]  Sven Klinkel,et al.  A NURBS based hybrid collocation–Galerkin method for the analysis of boundary represented solids , 2015 .

[64]  Manfred Bischoff,et al.  The discrete strain gap method and membrane locking , 2005 .

[65]  Z. Zou Isogeometric Shell Analysis: Multi-patch Coupling and Overcoming Locking , 2020 .

[66]  Dominique Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals - Second Edition , 2011 .

[67]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[68]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[69]  A. Combescure,et al.  Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method , 2013 .

[70]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[71]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[72]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[73]  Z. Zou,et al.  Isogeometric Bézier dual mortaring: Refineable higher-order spline dual bases and weakly continuous geometry , 2017, 1711.01009.

[74]  André Galligo,et al.  High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods , 2014 .

[75]  Michael C. H. Wu,et al.  Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials , 2015 .

[76]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[77]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[78]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[79]  W. Dornisch,et al.  An isogeometric Reissner–Mindlin shell element based on Bézier dual basis functions: Overcoming locking and improved coarse mesh accuracy , 2020 .