Geometric Approximation via Coresets
暂无分享,去创建一个
[1] J. Meigs,et al. WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.
[2] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[3] R. Dudley. Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .
[4] E. M. Bronshteyn,et al. The approximation of convex sets by polyhedra , 1975 .
[5] Jon Louis Bentley,et al. Decomposable Searching Problems , 1979, Inf. Process. Lett..
[6] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[7] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[8] Franco P. Preparata,et al. Approximation algorithms for convex hulls , 1982, CACM.
[9] Gene H. Golub,et al. Matrix computations , 1983 .
[10] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[11] David Haussler,et al. ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..
[12] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[13] Bernd Gärtner. A Subexponential Algorithm for Abstract Optimization Problems , 1992, FOCS.
[14] B. Gartner. A subexponential algorithm for abstract optimization problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[15] George O. Wesolowsky,et al. THE WEBER PROBLEM: HISTORY AND PERSPECTIVES. , 1993 .
[16] Kenneth L. Clarkson,et al. Algorithms for Polytope Covering and Approximation , 1993, WADS.
[17] Jirí Matousek,et al. On range searching with semialgebraic sets , 1992, Discret. Comput. Geom..
[18] Ketan Mulmuley,et al. Computational geometry : an introduction through randomized algorithms , 1993 .
[19] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[20] Paul S. Heckbert,et al. Survey of Polygonal Surface Simplification Algorithms , 1997 .
[21] Sunil Arya,et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.
[22] Sunil Arya,et al. ANN: library for approximate nearest neighbor searching , 1998 .
[23] Pankaj K. Agarwal,et al. Exact and Approximation Algortihms for Clustering , 1997 .
[24] K. Mardia,et al. Statistical Shape Analysis , 1998 .
[25] Bernard Chazelle,et al. The Discrepancy Method , 1998, ISAAC.
[26] Sariel Har-Peled,et al. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions , 1999, SODA '99.
[27] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[28] Timothy M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus , 2000, SCG '00.
[29] Micha Sharir,et al. Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells , 2000, SODA '00.
[30] Artur Czumaj,et al. Property Testing with Geometric Queries , 2001, ESA.
[31] Leonidas J. Guibas,et al. Maintaining the Extent of a Moving Point Set , 2001, Discret. Comput. Geom..
[32] A. Czumaj,et al. Property Testing with Geometric Queries (Extended Abstract) , 2001 .
[33] Pankaj K. Agarwal,et al. Approximation Algorithms for k-Line Center , 2002, ESA.
[34] Piotr Indyk,et al. Approximate clustering via core-sets , 2002, STOC '02.
[35] Sariel Har-Peled,et al. Projective clustering in high dimensions using core-sets , 2002, SCG '02.
[36] Timothy M. Chan. Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..
[37] YUNHONG ZHOU,et al. Algorithms for a Minimum Volume Enclosing Simplex in Three Dimensions , 2002, SIAM J. Comput..
[38] Kenneth L. Clarkson,et al. Smaller core-sets for balls , 2003, SODA '03.
[39] Joseph S. B. Mitchell,et al. Comuting Core-Sets and Approximate Smallest Enclosing HyperSpheres in High Dimensions , 2003, ALENEX.
[40] Marek Karpinski,et al. Approximation schemes for clustering problems , 2003, STOC '03.
[41] Sariel Har-Peled,et al. Shape fitting with outliers , 2003, SCG '03.
[42] Sariel Har-Peled. On Core-sets and Slabs , 2003 .
[43] Piyush Kumar,et al. Approximate Minimum Volume Enclosing Ellipsoids Using Core Sets , 2003 .
[44] Bernard Chazelle,et al. Sublinear geometric algorithms , 2003, STOC '03.
[45] Joseph S. B. Mitchell,et al. Approximate minimum enclosing balls in high dimensions using core-sets , 2003, ACM J. Exp. Algorithmics.
[46] Timothy M. Chan. Faster core-set constructions and data stream algorithms in fixed dimensions , 2004, SCG '04.
[47] Sariel Har-Peled,et al. Shape Fitting with Outliers , 2004, SIAM J. Comput..
[48] Jeff Erickson,et al. Optimally Cutting a Surface into a Disk , 2004, Discret. Comput. Geom..
[49] Sariel Har-Peled,et al. No, Coreset, No Cry , 2004, FSTTCS.
[50] Pankaj K. Agarwal,et al. Approximating extent measures of points , 2004, JACM.
[51] Amit Kumar,et al. A simple linear time (1 + /spl epsiv/)-approximation algorithm for k-means clustering in any dimensions , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[52] Pankaj K. Agarwal,et al. Practical methods for shape fitting and kinetic data structures using core sets , 2004, Symposium on Computational Geometry.
[53] David M. Mount,et al. On the least median square problem , 2004, SCG '04.
[54] Sariel Har-Peled. Clustering Motion , 2004, Discret. Comput. Geom..
[55] Rina Panigrahy,et al. Minimum Enclosing Polytope in High Dimensions , 2004, ArXiv.
[56] Sariel Har-Peled,et al. Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.
[57] Sariel Har-Peled,et al. High-Dimensional Shape Fitting in Linear Time , 2003, SCG '03.
[58] Sariel Har-Peled,et al. Smaller Coresets for k-Median and k-Means Clustering , 2005, SCG.
[59] Luis Rademacher,et al. Matrix Approximation and Projective Clustering via Iterative Sampling , 2005 .
[60] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[61] Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions , 2006, Comput. Geom..
[62] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[63] Nello Cristianini,et al. Support vector machines , 2009 .
[64] Kenneth L. Clarkson,et al. Optimal core-sets for balls , 2008, Comput. Geom..