Random cascades on wavelet dyadic trees

We introduce a new class of random fractal functions using the orthogonal wavelet transform. These functions are built recursively in the space-scale half-plane of the orthogonal wavelet transform, “cascading” from an arbitrary given large scale towards small scales. To each random fractal function corresponds a random cascading process (referred to as a W-cascade) on the dyadic tree of its orthogonal wavelet coefficients. We discuss the convergence of these cascades and the regularity of the so-obtained random functions by studying the support of their singularity spectra. Then, we show that very different statistical quantities such as correlation functions on the wavelet coefficients or the wavelet-based multifractal formalism partition functions can be used to characterize very precisely the underlying cascading process. We illustrate all our results on various numerical examples.

[1]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[2]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[3]  P. Grassberger,et al.  Scaling laws for invariant measures on hyperbolic and nonhyperbolic atractors , 1988 .

[4]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[5]  Shaun Lovejoy,et al.  Multifractal Cascade Dynamics and Turbulent Intermittency , 1997 .

[6]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .

[7]  Emmanuel Bacry,et al.  Singularity spectrum of multifractal functions involving oscillating singularities , 1998 .

[8]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[9]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[10]  Pierre Collet,et al.  The dimension spectrum of some dynamical systems , 1987 .

[11]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[12]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[13]  Vicsek,et al.  Multifractality of self-affine fractals. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  Alain Arneodo,et al.  Towards log-normal statistics in high Reynolds number turbulence , 1998 .

[15]  Bruce J. West,et al.  FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .

[16]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[18]  B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[19]  Patrick Tabeling,et al.  Turbulence : a tentative dictionary , 1994 .

[20]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[21]  Mitchell J. Feigenbaum Some characterizations of strange sets , 1987 .

[22]  E. Bacry,et al.  Wavelets and multifractal formalism for singular signals: Application to turbulence data. , 1991, Physical review letters.

[23]  Grossmann,et al.  Effect of dissipation fluctuations on anomalous velocity scaling in turbulence. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  Jensen,et al.  Scaling structure and thermodynamics of strange sets. , 1987, Physical review. A, General physics.

[25]  Michael Ghil,et al.  Turbulence and predictability in geophysical fluid dynamics and climate dynamics , 1985 .

[26]  D. Sornette,et al.  ”Direct” causal cascade in the stock market , 1998 .

[27]  Roberto Benzi,et al.  A random process for the construction of multiaffine fields , 1993 .

[28]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[29]  E. Novikov The effects of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients , 1990 .

[30]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[31]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[32]  D. Schertzer,et al.  Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes , 1987 .

[33]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[34]  Robert F. Cahalan,et al.  Bounded cascade models as nonstationary multifractals. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[36]  Bruce J. West,et al.  Fractal physiology for physicists: Lévy statistics , 1994 .

[37]  C. Meneveau,et al.  The multifractal nature of turbulent energy dissipation , 1991, Journal of Fluid Mechanics.

[38]  Yves Gagne,et al.  Log-similarity for turbulent flows? , 1993 .

[39]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[40]  A. Vulpiani,et al.  Anomalous scaling laws in multifractal objects , 1987 .

[41]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[42]  T. Vicsek,et al.  Fractals in natural sciences , 1994 .

[43]  Bacry,et al.  Oscillating singularities in locally self-similar functions. , 1995, Physical review letters.

[44]  Didier Sornette,et al.  Scale Invariance and Beyond , 1997 .

[45]  G. M. Molchan,et al.  Scaling exponents and multifractal dimensions for independent random cascades , 1996 .

[46]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[47]  Michèle Basseville,et al.  Modeling and estimation of multiresolution stochastic processes , 1992, IEEE Trans. Inf. Theory.

[48]  T. Vicsek Fractal Growth Phenomena , 1989 .

[49]  Emmanuel Bacry,et al.  Analysis of Random Cascades Using Space-Scale Correlation Functions , 1998 .

[50]  Emmanuel Bacry,et al.  Oscillating singularities on cantor sets: A grand-canonical multifractal formalism , 1997 .

[51]  She,et al.  Quantized energy cascade and log-Poisson statistics in fully developed turbulence. , 1995, Physical review letters.

[52]  P. Lipa,et al.  TRANSLATIONAL INVARIANCE IN TURBULENT CASCADE MODELS , 1997 .

[53]  B Rubinsky,et al.  On the use of the Weierstrass-Mandelbrot function to describe the fractal component of turbulent velocity , 1992 .

[54]  D. Rand The singularity spectrum f (α) for cookie-cutters , 1989 .

[55]  Roberto Benzi,et al.  On the multifractal nature of fully developed turbulence and chaotic systems , 1984 .

[56]  Hentschel Stochastic multifractality and universal scaling distributions. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  Peinke,et al.  Transition toward developed turbulence. , 1994, Physical review letters.

[58]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[59]  H. Stanley,et al.  FRACTAL LANDSCAPES IN BIOLOGICAL SYSTEMS , 1993 .