Hypocoercivity in Algebraically Constrained Partial Differential Equations with Application to Oseen Equations

The long-time behavior of solutions to different versions of Oseen equations of fluid flow on the 2D torus is analyzed using the concept of hypocoercivity. The considered models are isotropic Oseen equations where the viscosity acts uniformly in all directions and anisotropic Oseen-type equations with differentviscosity directions. The hypocoercivityindex is determined(if it exists) and it is shown that similar to the finite dimensional case of ordinary differential equations and differential-algebraic equations it characterizes its decay behavior.

[1]  V. Mehrmann,et al.  Hypocoercivity and hypocontractivity concepts for linear dynamical systems , 2022, The Electronic Journal of Linear Algebra.

[2]  E. Carlen,et al.  The hypocoercivity index for the short time behavior of linear time-invariant ODE systems , 2021, Journal of Differential Equations.

[3]  V. Mehrmann,et al.  Hypocoercivity and controllability in linear semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations , 2021, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[4]  Ruth F. Curtain,et al.  Introduction to Infinite-Dimensional Systems Theory , 2020 .

[5]  C. Schmeiser,et al.  Propagator norm and sharp decay estimates for Fokker–Planck equations with linear drift , 2020, Communications in Mathematical Sciences.

[6]  B. Sapiro Scalar , 2020, Definitions.

[7]  Volker Mehrmann,et al.  Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems , 2018, SIAM J. Matrix Anal. Appl..

[8]  E. Carlen,et al.  On multi-dimensional hypocoercive BGK models , 2017, 1711.07360.

[9]  A. Arnold,et al.  On Optimal Decay Estimates for ODEs and PDEs with Modal Decomposition , 2017, Stochastic Dynamics Out of Equilibrium.

[10]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[11]  Anton Arnold,et al.  On linear hypocoercive BGK models , 2015, 1510.02290.

[12]  A. Arnold,et al.  Large-time behavior in non-symmetric Fokker-Planck equations , 2015, 1506.02470.

[13]  Anton Arnold,et al.  Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift , 2014, 1409.5425.

[14]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[15]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[16]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[17]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[18]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[19]  Hyeong‐Ohk Bae,et al.  Estimates of the wake for the 3D Oseen equations , 2008 .

[20]  C. Villani,et al.  Hypocoercivity , 2006, math/0609050.

[21]  M. Paicu Équation anisotrope de Navier-Stokes dans des espaces critiques , 2005 .

[22]  Isabelle Gallagher,et al.  Fluids with anisotropic viscosity , 2000 .

[23]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[24]  P. Lagerstrom Laminar Flow Theory , 1996 .

[25]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[26]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[27]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[28]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[29]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[30]  P. Pedley,et al.  An Introduction to Fluid Dynamics , 1968 .

[31]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[32]  Annett Baier,et al.  Lectures On Fluid Mechanics , 2016 .

[33]  Etienne Emmrich,et al.  Operator Differential-Algebraic Equations Arising in Fluid Dynamics , 2013, Comput. Methods Appl. Math..

[34]  Brian Roffel,et al.  Linear Multivariable Control , 2004 .

[35]  Rolf Rannacher,et al.  Finite Element Methods for the Incompressible Navier-Stokes Equations , 2000 .

[36]  Rolf Rannacher,et al.  Fundamental directions in mathematical fluid mechanics , 2000 .

[37]  Scott W. Hansen,et al.  New results on the operator Carleson measure criterion , 1997 .

[38]  R. Temam,et al.  Asymptotic analysis of Oseen type equations in a channel at small viscosity , 1996 .

[39]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[40]  P. Grabowski On the Spectral-Lyapunov Approach to Parametric Optimization of Distributed-Parameter Systems , 1990 .

[41]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[42]  R. Curtain Infinite-Dimensional Linear Systems Theory , 1978 .

[43]  Tosio Kato Perturbation theory for linear operators , 1966 .

[44]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.