Iterative algorithms for X+ATX-1A=I by using the hierarchical identification principle

Abstract By using the hierarchical identification principle and introducing the convergence factor and the iterative matrix, a family of inversion-free iterative algorithms is proposed for solving nonlinear matrix equations X + A T X − 1 A = I . The convergence is proved and the convergence speed is analyzed. The suggested iterative algorithm includes some previous algorithms as its special cases. Two numerical examples are given to illustrate the proposed algorithms. Theoretical analysis and numerical examples show that for appropriate convergence factors, the proposed algorithms are more efficient than the existing inversion-free iterative algorithms.

[1]  Guang-Ren Duan,et al.  Global and Semi-Global Stabilization of Linear Systems With Multiple Delays and Saturations in the Input , 2010, SIAM J. Control. Optim..

[2]  Salah M. El-Sayed,et al.  A new inversion free iteration for solving the equation X+A* X -1 A=Q , 2005 .

[3]  Xi-Yan Hu,et al.  Elsevier Editorial System(tm) for Journal of Computational and Applied Mathematics Manuscript Draft Title: New Symmetry Preserving Method for Optimal Correction of Damping and Stiffness Matrices Using Measured Modes New Symmetry Preserving Method for Optimal Correction of Damping and Stiffness Matri , 2022 .

[4]  Feng Ding,et al.  Combined state and least squares parameter estimation algorithms for dynamic systems , 2014 .

[5]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[6]  Guang-Ren Duan,et al.  Stabilization of linear systems with distributed input delay and input saturation , 2012, Autom..

[7]  Ai-Guo Wu,et al.  Finite iterative algorithms for extended Sylvester-conjugate matrix equations , 2011, Math. Comput. Model..

[8]  Guangbin Cai,et al.  Solving periodic Lyapunov matrix equations via finite steps iteration , 2012 .

[9]  Yanjun Liu,et al.  Gradient based and least squares based iterative algorithms for matrix equations AXB + CXTD = F , 2010, Appl. Math. Comput..

[10]  G. Duan,et al.  An explicit solution to the matrix equation AX − XF = BY , 2005 .

[11]  Xingzhi Zhan,et al.  On the matrix equation X + ATX−1A = I , 1996 .

[12]  Ai-Guo Wu,et al.  On matrix equations X-AXF=C and X-AXF=C , 2009 .

[13]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[14]  A. Liao,et al.  On the existence of Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q , 2008 .

[15]  Salah M. El-Sayed,et al.  Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-αA=Q , 2007 .

[16]  Feng Ding,et al.  On Iterative Solutions of General Coupled Matrix Equations , 2006, SIAM J. Control. Optim..

[17]  Feng Ding,et al.  Gradient based iterative solutions for general linear matrix equations , 2009, Comput. Math. Appl..

[18]  Feng Ding,et al.  An efficient hierarchical identification method for general dual-rate sampled-data systems , 2014, Autom..

[19]  James Lam,et al.  Toward solution of matrix equation X = Af (X)B + C , 2011, 1211.0346.

[20]  Feng Ding,et al.  Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle , 2008, Appl. Math. Comput..

[21]  Feng Ding,et al.  Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model , 2015, Digit. Signal Process..

[22]  Ai-Guo Wu,et al.  Iterative solutions to the extended Sylvester-conjugate matrix equations , 2010, Appl. Math. Comput..

[23]  Feng Ding,et al.  A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations , 2014, J. Frankl. Inst..

[24]  Leiba Rodman,et al.  Algebraic Riccati equations , 1995 .

[25]  Feng Ding,et al.  Iterative solutions to matrix equations of the form AiXBi=Fi , 2010, Comput. Math. Appl..

[26]  Feng Ding,et al.  State filtering and parameter estimation for state space systems with scarce measurements , 2014, Signal Process..

[27]  James Lam,et al.  Gradient-based maximal convergence rate iterative method for solving linear matrix equations , 2010, Int. J. Comput. Math..

[28]  James Lam,et al.  Positive definite solutions of the nonlinear matrix equation , 2013, Appl. Math. Comput..

[29]  Ai-Guo Wu,et al.  Iterative solutions to the Kalman-Yakubovich-conjugate matrix equation , 2011, Appl. Math. Comput..

[30]  Chun-Hua Guo,et al.  Iterative solution of two matrix equations , 1999, Math. Comput..

[31]  Feng Ding,et al.  Hierarchical estimation algorithms for multivariable systems using measurement information , 2014, Inf. Sci..

[32]  Yu Liu,et al.  New solution bounds for the continuous algebraic Riccati equation , 2011, J. Frankl. Inst..

[33]  Marcos Raydan,et al.  A NEW INVERSION-FREE METHOD FOR A RATIONAL MATRIX EQUATION , 2010 .

[34]  Xingzhi Zhan,et al.  Computing the Extremal Positive Definite Solutions of a Matrix Equation , 1996, SIAM J. Sci. Comput..

[35]  Guang-Ren Duan,et al.  Gradient based iterative algorithm for solving coupled matrix equations , 2009, Syst. Control. Lett..

[36]  Zhen-yun Peng An iterative method for the least squares symmetric solution of the linear matrix equation AXB = C , 2005, Appl. Math. Comput..

[37]  James Lam,et al.  Convergence of gradient-based iterative solution of coupled Markovian jump Lyapunov equations , 2008, Comput. Math. Appl..

[38]  J. Engwerda On the existence of a positive definite solution of the matrix equation X + A , 1993 .

[39]  A. Liao,et al.  On Hermitian positive definite solution of the matrix equation X - Σ m i=1 A i * X r A i = Q , 2009 .

[40]  A. Ran,et al.  Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A*X-1A = Q , 1993 .

[41]  Guang-Ren Duan,et al.  Weighted least squares solutions to general coupled Sylvester matrix equations , 2009 .

[42]  Xue-Feng Duan,et al.  Thompson metric method for solving a class of nonlinear matrix equation , 2010, Appl. Math. Comput..