A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization
暂无分享,去创建一个
[1] Riadh Omheni. Méthodes primales-duales régularisées pour l'optimisation non linéaire avec contraintes , 2014 .
[2] Hiroshi Yamashita,et al. Quadratic Convergence of a Primal-Dual Interior Point Method for Degenerate Nonlinear Optimization Problems , 2005, Comput. Optim. Appl..
[3] Hao Wang,et al. A Sequential Quadratic Optimization Algorithm with Rapid Infeasibility Detection , 2014, SIAM J. Optim..
[4] Riadh Omheni,et al. A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization , 2017, Optim. Methods Softw..
[5] Dominique Orban,et al. From global to local convergence of interior methods for nonlinear optimization , 2013, Optim. Methods Softw..
[6] Jie Sun,et al. A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs , 2018, Journal of Industrial & Management Optimization.
[7] Stephen J. Wright,et al. Local Convergence of a Primal-Dual Method for Degenerate Nonlinear Programming , 2002, Comput. Optim. Appl..
[8] E. G. Birgin,et al. Optimality properties of an Augmented Lagrangian method on infeasible problems , 2015, Comput. Optim. Appl..
[9] Paul Armand,et al. An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities , 2018, J. Optim. Theory Appl..
[10] Iain S. Duff,et al. MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.
[11] José Mario Martínez,et al. Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming , 2014, J. Glob. Optim..
[12] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[13] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[14] Klaus Schittkowski,et al. Test examples for nonlinear programming codes , 1980 .
[15] Riadh Omheni,et al. A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization , 2017, J. Optim. Theory Appl..
[16] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[17] Dominique Orban,et al. Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming , 2008, Comput. Optim. Appl..
[18] Paul Armand,et al. Uniform boundedness of the inverse of a Jacobian matrix arising in regularized interior-point methods , 2013, Math. Program..
[19] Vincent Pateloup,et al. Study of a primal-dual algorithm for equality constrained minimization , 2011, Comput. Optim. Appl..
[20] Jorge Nocedal,et al. Knitro: An Integrated Package for Nonlinear Optimization , 2006 .
[21] Paul Armand,et al. A local convergence property of primal-dual methods for nonlinear programming , 2008, Math. Program..
[22] Klaus Schittkowski,et al. More test examples for nonlinear programming codes , 1981 .
[23] Jorge Nocedal,et al. An interior point method for nonlinear programming with infeasibility detection capabilities , 2014, Optim. Methods Softw..
[24] Jorge Nocedal,et al. Infeasibility Detection and SQP Methods for Nonlinear Optimization , 2010, SIAM J. Optim..
[25] G. Debreu. Definite and Semidefinite Quadratic Forms , 1952 .
[26] Frank E. Curtis. Noname manuscript No. (will be inserted by the editor) A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization , 2011 .
[27] José Mario Martínez,et al. Handling infeasibility in a large-scale nonlinear optimization algorithm , 2012, Numerical Algorithms.
[28] Jefferson G. Melo,et al. Augmented Lagrangian methods for nonlinear programming with possible infeasibility , 2015, J. Glob. Optim..
[29] Stephen J. Wright,et al. Properties of the Log-Barrier Function on Degenerate Nonlinear Programs , 2002, Math. Oper. Res..