Enhancing slow- and fast-light effects in quantum dot semiconductor waveguides through ultrafast dynamics

In this paper we review our theoretical work on slow and fast light effects in quantum dot semiconductor optical amplifiers (QD SOAs), in particular we investigate the carrier dynamical contributions to the dynamic gain grating and cross gain modulation induced by unique ultrafast inter-subband carrier dynamics between discrete QD bound states. Our calculations predict that by increasing the injection current density, additional ultra-fast coherent gain contributions around 100GHz arise in contrast to the slow sub-gigahertz carrier density pulsation (CDP) effects. For potential applications in microwave photonics, especially targeting the millimeter wave range, we propose that quantum dot devices might be used to realize an optically fed microwave phase shifter in the frequency range of 100GHz.

[1]  M. Alouini,et al.  Spurious-free dynamic range of a tunable delay line based on slow light in SOA , 2009, 2009 International Topical Meeting on Microwave Photonics.

[2]  Gadi Eisenstein,et al.  Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering. , 2005, Optics express.

[3]  Robert W Boyd,et al.  Observation of ultraslow light propagation in a ruby crystal at room temperature. , 2003, Physical review letters.

[4]  Kresten Yvind,et al.  Slow light in a semiconductor waveguide at gigahertz frequencies. , 2005, Optics express.

[5]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[6]  Jesper Mørk,et al.  Gain dynamics and saturation in semiconductor quantum dot amplifiers , 2004 .

[7]  J. Mork,et al.  Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides , 2008, Journal of Lightwave Technology.

[8]  J. Mørk,et al.  Controllable delay of ultrashort pulses in a quantum dot optical amplifier. , 2005, Optics express.

[9]  John Houlihan,et al.  Electron and hole dynamics of InAs∕GaAs quantum dot semiconductor optical amplifiers , 2007 .

[10]  Jesper Mørk,et al.  The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers. , 2009, Optics express.

[11]  Frank Jahnke,et al.  Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers , 2004 .

[12]  M. Ishida,et al.  Recent progress of self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb/s directly modulated lasers and 40 Gb/s signal-regenerative amplifiers , 2006 .

[13]  Shun Lien Chuang,et al.  Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices , 2006, Journal of Lightwave Technology.

[14]  Kresten Yvind,et al.  Slow and fast light: Controlling the speed of light using semiconductor waveguides , 2009 .

[15]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[16]  K. Williams,et al.  Microwave photonics , 2002 .

[17]  Jesper Mork,et al.  Ultrahigh-Frequency Microwave Phase Shifts Mediated by Ultrafast Dynamics in Quantum-Dot Semiconductor Optical Amplifiers , 2010, IEEE Photonics Technology Letters.

[18]  Jesper Mørk,et al.  Enhancing light slow-down in semiconductor optical amplifiers by optical filtering. , 2008, Optics letters.

[19]  Z. Dutton,et al.  Observation of coherent optical information storage in an atomic medium using halted light pulses , 2001, Nature.

[20]  Luc Thévenaz,et al.  Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. , 2005, Optics express.

[21]  C. Chang-Hasnain,et al.  Ultrahigh-bandwidth electrically tunable fast and slow light in semiconductor optical amplifiers [Invited] , 2008 .

[22]  Weiqi Xue,et al.  Microwave photonic true time delay based on cross gain modulation in semiconductor optical amplifiers , 2010, OECC 2010 Technical Digest.

[23]  C. Chang-Hasnain,et al.  Slow-light in semiconductor quantum wells , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[24]  Shun Lien Chuang,et al.  Ultraslow light (<200m∕s) propagation in a semiconductor nanostructure , 2005 .

[25]  J. Mørk,et al.  Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning , 1994 .

[26]  Irwin L. Newberg,et al.  The first demonstration of an optically steered microwave phased array antenna using true-time-delay , 1991 .

[27]  G. Eisenstein,et al.  On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  P. Kondratko,et al.  Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier. , 2007, Optics express.

[29]  Jacob Fage-Pedersen,et al.  Photonic crystal waveguides with semi-slow light and tailored dispersion properties. , 2006, Optics express.

[30]  A. Schweinsberg,et al.  Tunable all-optical delays via Brillouin slow light in an optical fiber , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[31]  J. Mørk,et al.  Voltage-controlled slow light in an integrated semiconductor structure with net gain. , 2006, Optics express.

[32]  C. Chang-Hasnain,et al.  Slow and superluminal light in semiconductor optical amplifiers , 2005 .

[33]  Two-wave competition in ultralong semiconductor optical amplifiers , 2005, IEEE Journal of Quantum Electronics.

[34]  J. Mørk,et al.  Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers , 1997 .

[35]  J.C. Cartledge,et al.  Measurement-based model for cross-absorption Modulation in an MQW electroabsorption modulator , 2004, Journal of Lightwave Technology.

[36]  Y. Arakawa,et al.  Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers , 2004 .

[37]  J. Mørk,et al.  Enhancing slow- and fast-light effects in quantum-dot semiconductor waveguides through ultrafast dynamics. , 2010, Optics letters.

[38]  B. Ortega,et al.  A tutorial on microwave photonic filters , 2006, Journal of Lightwave Technology.

[39]  Takaaki Mukai,et al.  Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5- mu m traveling-wave semiconductor laser amplifier , 1990 .

[40]  O. Hess,et al.  Pulse Amplification and Spatio-Spectral Hole-Burning in Inhomogeneously Broadened Quantum-Dot Semiconductor Optical Amplifiers , 2009, IEEE Journal of Quantum Electronics.

[41]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[42]  G. Eisenstein,et al.  Structure dependent modulation responses in quantum-well lasers , 1992 .

[43]  J. Capmany,et al.  Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. , 2010, Optics express.

[44]  A. Schliwa,et al.  Existence of a phonon bottleneck for excitons in quantum dots , 2001 .

[45]  S.L. Chuang,et al.  A microwave photonic phase-shifter based on wavelength conversion in a DFB laser , 2006, IEEE Photonics Technology Letters.

[46]  Shun Lien Chuang,et al.  High-speed wavelength conversion in quantum-dot and quantum-well semiconductor optical amplifiers , 2008 .

[47]  Hui Su,et al.  Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers. , 2006, Optics express.

[48]  Nikolai N. Ledentsov,et al.  On gain saturation in quantum dot semiconductor optical amplifiers , 2005 .

[49]  A. Bogatov,et al.  ARTICLES: Interaction of modes and self-stabilization of single-frequency emission from injection lasers , 1983 .