On the mod p unramified cohomology of varieties having universally trivial Chow group of zero-cycles

[1]  Takao Yamazaki,et al.  Unramified logarithmic Hodge–Witt cohomology and $\mathbb {P}^1$-invariance , 2021, Forum of Mathematics, Sigma.

[2]  F. Binda,et al.  On the cohomology of reciprocity sheaves , 2020, Forum of Mathematics, Sigma.

[3]  Burt Totaro,et al.  Cohomological Invariants in Positive Characteristic , 2020, International Mathematics Research Notices.

[4]  Hans-Christian Graf von Bothmer,et al.  Unramified Brauer groups of conic bundle threefolds in characteristic two , 2018, American Journal of Mathematics.

[5]  Asher Auel,et al.  Universal Triviality of the Chow Group of 0-cycles and the Brauer Group , 2018, International Mathematics Research Notices.

[6]  Philippe Gille,et al.  Central Simple Algebras and Galois Cohomology , 2017 .

[7]  S. Blinstein Cohomological invariants of algebraic tori , 2013 .

[8]  Dino J. Lorenzini,et al.  The index of an algebraic variety , 2012, 1209.2828.

[9]  B. Kahn Relatively unramified elements in cycle modules , 2011 .

[10]  A. Merkurjev Unramified elements in cycle modules , 2008 .

[11]  M. Kerz,et al.  On different notions of tameness in arithmetic geometry , 2008, 0807.0979.

[12]  Atsushi Shiho On Logarithmic Hodge-Witt Cohomology of Regular Schemes , 2007 .

[13]  V. Snaith COHOMOLOGICAL INVARIANTS IN GALOIS COHOMOLOGY (University Lecture Series 28) By SKIP GARIBALDI, ALEXANDER MERKURJEV and JEAN-PIERRE SERRE: 168 pp., US$35.00, ISBN 0-8218-3287-5 (American Mathematical Society, Providence, RI, 2003) , 2004 .

[14]  M. Rost Chow groups with coefficients , 1996, Documenta Mathematica.

[15]  Alex Rosenberg,et al.  -Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras , 1994 .

[16]  M. Gros,et al.  La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique , 1988 .

[17]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[18]  M. Gros Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique , 1985 .

[19]  Kazuya Kato Galois cohomology of complete discrete valuation fields , 1982 .

[20]  加藤 和也 A generalization of local class field theory by using K-groups I, II, III = K-群による局所類体論の一般化 , 1980 .

[21]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[22]  S. Bloch Algebraic K-theory and crystalline cohomology , 1977 .

[23]  Kazuya Kato A generalization of local class field theory by using $K$-groups, II , 1977 .