SARRE: Semantics-Aware Rule Recommendation and Enforcement for Event Paths on Android

This paper presents a semantics-aware rule recommendation and enforcement (SARRE) system for taming information leakage on Android. SARRE leverages statistical analysis and a novel application of minimum path cover algorithm to identify system event paths from dynamic runtime monitoring. Then, an online recommendation system is developed to automatically assign a fine-grained security rule to each event path, capitalizing on both known security rules and application semantic information. The proposed SARRE system is prototyped on Android devices and evaluated using real-world malware samples and popular apps from Google Play spanning multiple categories. Our results show that SARRE achieves 93.8% precision and 96.4% recall in identifying the event paths, compared with tainting technique. Also, the average difference between rule recommendation and manual configuration is less than 5%, validating the effectiveness of the automatic rule recommendation. It is also demonstrated that by enforcing the recommended security rules through a camouflage engine, SARRE can effectively prevent information leakage and enable fine-grained protection over private data with very small performance overhead.

[1]  Deborah Estrin,et al.  Diversity in smartphone usage , 2010, MobiSys '10.

[2]  Julia Rubin,et al.  A Bayesian Approach to Privacy Enforcement in Smartphones , 2014, USENIX Security Symposium.

[3]  Peng Liu,et al.  LeakProber: a framework for profiling sensitive data leakage paths , 2011, CODASPY '11.

[4]  Zhi Xu,et al.  SemaDroid: A Privacy-Aware Sensor Management Framework for Smartphones , 2015, CODASPY.

[5]  Malcolm Hall,et al.  ProtectMyPrivacy: detecting and mitigating privacy leaks on iOS devices using crowdsourcing , 2013, MobiSys '13.

[6]  Chao Yang,et al.  DroidMiner: Automated Mining and Characterization of Fine-grained Malicious Behaviors in Android Applications , 2014, ESORICS.

[7]  S. Louis Hakimi,et al.  On Path Cover Problems in Digraphs and Applications to Program Testing , 1979, IEEE Transactions on Software Engineering.

[8]  Yuan Zhang,et al.  Vetting undesirable behaviors in android apps with permission use analysis , 2013, CCS.

[9]  Xiao Ma,et al.  AutoISES: Automatically Inferring Security Specification and Detecting Violations , 2008, USENIX Security Symposium.

[10]  Konrad Rieck,et al.  DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket , 2014, NDSS.

[11]  Tao Xie,et al.  WHYPER: Towards Automating Risk Assessment of Mobile Applications , 2013, USENIX Security Symposium.

[12]  Wenke Lee,et al.  Checking More and Alerting Less: Detecting Privacy Leakages via Enhanced Data-flow Analysis and Peer Voting , 2015, NDSS.

[13]  Alastair R. Beresford,et al.  MockDroid: trading privacy for application functionality on smartphones , 2011, HotMobile '11.

[14]  Chao Yang,et al.  Using Provenance Patterns to Vet Sensitive Behaviors in Android Apps , 2015, SecureComm.

[15]  Mu Zhang,et al.  Efficient, context-aware privacy leakage confinement for android applications without firmware modding , 2014, AsiaCCS.

[16]  Samuel T. King,et al.  Backtracking intrusions , 2003, SOSP '03.

[17]  Simin Nadjm-Tehrani,et al.  Crowdroid: behavior-based malware detection system for Android , 2011, SPSM '11.

[18]  Kun Yang,et al.  IntentFuzzer: detecting capability leaks of android applications , 2014, AsiaCCS.

[19]  Heng Yin,et al.  DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android , 2013, SecureComm.

[20]  Byung-Gon Chun,et al.  TaintDroid: an information flow tracking system for real-time privacy monitoring on smartphones , 2014, Commun. ACM.

[21]  Steve Hanna,et al.  Android permissions demystified , 2011, CCS '11.

[22]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[23]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[24]  Yubin Xia,et al.  AdAttester: Secure Online Mobile Advertisement Attestation Using TrustZone , 2015, MobiSys.

[25]  Carl A. Gunter,et al.  What's in Your Dongle and Bank Account? Mandatory and Discretionary Protection of Android External Resources , 2015, NDSS.

[26]  Kapil Singh Practical Context-Aware Permission Control for Hybrid Mobile Applications , 2013, RAID.

[27]  Yongbo Li,et al.  POSTER: Semantics-Aware Rule Recommendation and Enforcement for Event Paths , 2015, SecureComm.

[28]  Mu Zhang,et al.  Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs , 2014, CCS.

[29]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[30]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[31]  Zhong Chen,et al.  AutoCog: Measuring the Description-to-permission Fidelity in Android Applications , 2014, CCS.

[32]  Liang Gu,et al.  Context-Aware Usage Control for Android , 2010, SecureComm.

[33]  Ninghui Li,et al.  Using probabilistic generative models for ranking risks of Android apps , 2012, CCS.

[34]  Neil J. Hurley,et al.  Detecting noise in recommender system databases , 2006, IUI '06.

[35]  Dawn Xiaodong Song,et al.  Contextual Policy Enforcement in Android Applications with Permission Event Graphs , 2013, NDSS.

[36]  Yajin Zhou,et al.  Dissecting Android Malware: Characterization and Evolution , 2012, 2012 IEEE Symposium on Security and Privacy.

[37]  Yajin Zhou,et al.  Taming Information-Stealing Smartphone Applications (on Android) , 2011, TRUST.

[38]  Heng Yin,et al.  DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis , 2012, USENIX Security Symposium.

[39]  Mauro Conti,et al.  MOSES: Supporting and Enforcing Security Profiles on Smartphones , 2014, IEEE Transactions on Dependable and Secure Computing.

[40]  Xin Chen,et al.  DroidJust: automated functionality-aware privacy leakage analysis for Android applications , 2015, WISEC.

[41]  Mani B. Srivastava,et al.  ipShield: A Framework For Enforcing Context-Aware Privacy , 2014, NSDI.

[42]  Benjamin Livshits,et al.  Merlin: specification inference for explicit information flow problems , 2009, PLDI '09.

[43]  Mauro Conti,et al.  CRêPE: A System for Enforcing Fine-Grained Context-Related Policies on Android , 2012, IEEE Transactions on Information Forensics and Security.

[44]  Byung-Gon Chun,et al.  TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones , 2010, OSDI.

[45]  Yuan Zhang,et al.  AppIntent: analyzing sensitive data transmission in android for privacy leakage detection , 2013, CCS.

[46]  Jean-Pierre Seifert,et al.  pBMDS: a behavior-based malware detection system for cellphone devices , 2010, WiSec '10.

[47]  William Enck,et al.  AppsPlayground: automatic security analysis of smartphone applications , 2013, CODASPY.

[48]  Stephen Smalley,et al.  Security Enhanced (SE) Android: Bringing Flexible MAC to Android , 2013, NDSS.