Substitutions, Rauzy fractals and tilings

This chapter focuses on multiple tilings associated with substitutive dynamical systems. We recall that a substitutive dynamical system (Xσ, S) is a symbolic dynamical system where the shift S acts on the set Xσ of infinite words having the same language as a given infinite word which is generated by powers of a primitive substitution σ. We restrict to the case where the inflation factor of the substitution σ is a unit Pisot number. With such a substitution σ, we associate a multiple tiling composed of tiles which are given by the unique solution of a set equation expressed in terms of a graph associated with the substitution σ: these tiles are attractors of a graph-directed iterated function system (GIFS). They live in R, where n stands for the cardinality of the alphabet of the substitution. Each of these tiles is compact, it is the closure of its interior, it has non-zero measure and it has a fractal boundary that is also an attractor of a GIFS. These tiles are called central tiles or Rauzy fractals, according to G. Rauzy who introduced them in (Rauzy 1982). Central tiles were first introduced in (Rauzy 1982) for the case of the Tribonacci substitution (1 7→ 12, 2 7→ 13, 3 7→ 1), and then in (Thurston 1989) for the case of the beta-numeration associated with the Tribonacci number (which is the positive root of X − X − X − 1). One motivation for Rauzy’s construction was to exhibit explicit factors of the substitutive dynamical system (Xσ, S) as translations on compact abelian groups, under the hypothesis that σ is a Pisot substitution. By extending the seminal construction in (Rauzy 1982), it has been proved that central tiles can be associated with Pisot substitutions (see for instance (Arnoux and Ito 2001) or (Canterini and Siegel 2001b)) as well as

[1]  Richard Kenyon,et al.  Arithmetic construction of sofic partitions of hyperbolic toral automorphisms , 1998, Ergodic Theory and Dynamical Systems.

[2]  Clemens Fuchs,et al.  SUBSTITUTIONS, ABSTRACT NUMBER SYSTEMS AND THE SPACE FILLING PROPERTY , 2006 .

[3]  Boris Solomyak,et al.  Corrections to ‘Dynamics of self-similar tilings’ Ergod. Th. & Dynam. Sys.17 (1997), 695–738 , 1999, Ergodic Theory and Dynamical Systems.

[4]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[5]  Shigeki Akiyama,et al.  A Survey on Topological Properties of Tiles Related to Number Systems , 2004 .

[6]  Pierre Arnoux,et al.  Two-dimensional iterated morphisms and discrete planes , 2004, Theor. Comput. Sci..

[7]  Valérie Berthé,et al.  Fractal tiles associated with shift radix systems☆ , 2009, Advances in mathematics.

[8]  Peter A. B. Pleasants,et al.  Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.

[9]  Jeong-Yup Lee Substitution Delone sets with pure point spectrum are inter-model sets , 2005, math/0510425.

[10]  W. Steiner,et al.  Beta-expansions, natural extensions and multiple tilings , 2009 .

[11]  Proximality in Pisot tiling spaces , 2005, math/0509051.

[12]  Valérie Berthé,et al.  Tilings associated with beta-numeration and substitutions. , 2005 .

[13]  Sergey Bezuglyi,et al.  Topics in dynamics and ergodic theory , 2003 .

[14]  Lorenzo Sadun,et al.  When shape matters: deformations of tiling spaces , 2003, Ergodic Theory and Dynamical Systems.

[15]  Thomas Fernique,et al.  Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..

[16]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[17]  M. Hama,et al.  Periodic β-expansions for Certain Classes of Pisot Numbers , 1997 .

[18]  Pierre Arnoux,et al.  Discrete planes, ${\mathbb {Z}}^2$-actions, Jacobi-Perron algorithm and substitutions , 2002 .

[19]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[20]  Thomas Fernique,et al.  Multidimensional Sturmian Sequences and Generalized Substitutions , 2006, Int. J. Found. Comput. Sci..

[21]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[22]  A. Messaoudi Propriétés arithmétiques et dynamiques du fractal de Rauzy , 1998 .

[23]  A. Siegel,et al.  Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .

[24]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[25]  Jean Marie Dumont,et al.  Digital sum moments and substitutions , 1993 .

[26]  Boris Solomyak,et al.  Two-symbol Pisot substitutions have pure discrete spectrum , 2003, Ergodic Theory and Dynamical Systems.

[27]  Marcy Barge,et al.  Geometric theory of unimodular Pisot substitutions , 2006 .

[28]  Maki Furukado,et al.  Pisot substitutions and the Hausdorff dimension of boundaries of atomic surfaces , 2006 .

[29]  Boris Solomyak,et al.  Dynamics of self-similar tilings , 1997, Ergodic Theory and Dynamical Systems.

[30]  Hui Rao,et al.  Atomic surfaces, tilings and coincidence I. irreducible case , 2006 .

[31]  Pierre-Jean Laurent,et al.  On simultaneous approximation , 1998 .

[32]  Fernique Thomas,et al.  MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .

[33]  Shunji Ito,et al.  Tilings from some non-irreducible, Pisot substitutions , 2005, Discret. Math. Theor. Comput. Sci..

[34]  Boris Solomyak,et al.  Consequences of Pure Point Diffraction Spectra for Multiset Substitution Systems , 2009, Discret. Comput. Geom..

[35]  Richard Swanson,et al.  The Branch Locus for One-Dimensional Pisot Tiling Spaces , 2008 .

[36]  K. Schmidt,et al.  Irreducibility, Homoclinic Points and Adjoint Actions of Algebraic ℤ d -Actions of Rank One , 2002 .

[37]  Marcy Barge,et al.  Elements of the theory of unimodular Pisot substitutions with an application to β-shifts , 2005 .

[38]  Dirk Frettlöh,et al.  Computing Modular Coincidences for Substitution Tilings and Point Sets , 2006, Discret. Comput. Geom..

[39]  F. Durand,et al.  Boundary of the Rauzy fractal sets in $\RR \times \CC$ generated by $P(x)=x^4-x^3-x^2-x-1$ , 2008, 0807.3321.

[40]  K. Roberts,et al.  Thesis , 2002 .

[41]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[42]  A. Siegel,et al.  Pure discrete spectrum dynamical system and periodic tiling associated with a substitution , 2004 .

[43]  Brenda Praggastis,et al.  Numeration systems and Markov partitions from self similar tilings , 1999 .

[44]  Shunji Ito,et al.  Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions , 2006 .

[45]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[46]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[47]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[48]  Marcy Barge,et al.  Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta $-shifts , 2006 .

[49]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[50]  Michel Rigo,et al.  Abstract Numeration Systems and Tilings , 2005, MFCS.

[51]  Shigeki Akiyama,et al.  On the boundary of self affine tilings generated by Pisot numbers , 2002 .

[52]  R. Moody Meyer Sets and Their Duals , 1997 .

[53]  Klaus Schmidt,et al.  Algebraic Coding of Expansive Group Automorphisms and Two-sided Beta-Shifts , 2000 .

[54]  K. Schmidt,et al.  Symbolic representations of nonexpansive group automorphisms , 2004, math/0409257.

[55]  H. Rao,et al.  Atomic surfaces, tilings and coincidences II. Reducible case , 2007 .

[56]  Shigeki Akiyama,et al.  Cubic Pisot units with finite beta expansions , 2004 .

[57]  V. Berthé,et al.  Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions , 2007, 0710.3584.

[58]  Valérie Berthé,et al.  Dynamical directions in numeration , 2006 .

[59]  Marcy Barge,et al.  Coincidence for substitutions of Pisot type , 2002 .

[60]  Jörg M. Thuswaldner,et al.  Topological Properties of Rauzy Fractals , 2010 .

[61]  Bernd Sing,et al.  Pisot substitutions and beyond , 2006 .

[62]  Makoto Ohtsuki,et al.  Modified Jacobi-Perron Algorithm and Generating Markov Partitions for Special Hyperbolic Toral Automorphisms , 1993 .

[63]  Coincidence values and spectra of substitutions , 1978 .

[64]  Ali Messaoudi,et al.  Best simultaneous diophantine approximations of Pisot numbers and Rauzy fractals , 2006 .

[65]  Anatoly M. Vershik,et al.  Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .

[66]  A. Messaoudi,et al.  Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci , 2001 .

[67]  Hui Rao,et al.  A CERTAIN FINITENESS PROPERTY OF PISOT NUMBER SYSTEMS , 2004 .

[68]  H. Rao,et al.  Atomic surfaces, tilings and coincidences II. Reducible case , 2007 .

[69]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[70]  Jean-Pierre Reveillès Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .

[71]  Lorenzo Sadun,et al.  Topology of tiling spaces , 2008 .

[72]  Andrew Haas,et al.  Self-Similar Lattice Tilings , 1994 .

[73]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[74]  Jörg M. Thuswaldner,et al.  Unimodular Pisot substitutions and their associated tiles , 2006 .

[75]  G. Rauzy,et al.  Sequences defined by iterated morphisms , 1990 .

[76]  Shin-ichi Yasutomi,et al.  On simultaneous approximation to (α,α2) with α3+kα−1=0 , 2003 .

[77]  P. A. B. Pleasants,et al.  Local Complexity of Delone Sets and Crystallinity , 2002, Canadian Mathematical Bulletin.

[78]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[79]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[80]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .

[81]  B. Solomyak,et al.  Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type , 2002, Canadian Mathematical Bulletin.

[82]  Klop,et al.  Section 5 , 2007, 2019 9th International Conference on Advanced Computer Information Technologies (ACIT).

[83]  Taizo Sadahiro Multiple points of tilings associated with Pisot numeration systems , 2006, Theor. Comput. Sci..

[84]  Mike Mannion,et al.  Complex systems , 1997, Proceedings International Conference and Workshop on Engineering of Computer-Based Systems.

[85]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .