Investigating Recursive Point Voronoi Diagrams

Recursive Voronoi diagrams (RVDs) use Voronoi concepts to tessellate a space with respect to a given set of generators and repeat the construction every time with a new generator set consisting of objects selected from the previous generator set plus features of the current tessellation. In this paper, we investigate the behaviour of three variants of a single recursive Voronoi construction involving point generators. We describe how these structures may be constructed in Arc/Info. Although we suggest that RVDs have a number of potential uses in GIS, we focus on a spatial modelling perspective and examine some of their statistical characteristics. The RVDs examined are found to be fractal in nature.

[1]  Leila De Floriani,et al.  Hierarchical triangulation for multiresolution surface description , 1995, TOGS.

[2]  C. J. Stone,et al.  Introduction to Stochastic Processes , 1972 .

[3]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[4]  Hamid R. Arabnia,et al.  Comparison of existing triangulation methods for regularly and irregularly spaced height fields , 2001, Int. J. Geogr. Inf. Sci..

[5]  Christopher M. Gold,et al.  Voronoi Methods in GIS , 1996, Algorithmic Foundations of Geographic Information Systems.

[6]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[7]  Atsuyuki Okabe,et al.  Nearest Neighbourhood Operations with Generalized Voronoi Diagrams: A Review , 1994, Int. J. Geogr. Inf. Sci..

[8]  Bernard Moulin,et al.  "Time Travel" Visualization in a Dynamic Voronoi Data Structure , 1999 .

[9]  Barry Boots,et al.  articles: Relaxing the nearest centre assumption in central place theory , 1999 .

[10]  Joe N. Perry,et al.  Spatial analysis by distance indices , 1995 .

[11]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[12]  Leila De Floriani,et al.  A Hierarchical Triangle-Based Model for Terrain Description , 1992, Spatio-Temporal Reasoning.

[13]  Leila De Floriani,et al.  A pyramidal data structure for triangle-based surface description , 1989, IEEE Computer Graphics and Applications.

[14]  Wenzhong Shi,et al.  Development of Voronoi-based cellular automata -an integrated dynamic model for Geographical Information Systems , 2000, Int. J. Geogr. Inf. Sci..

[15]  Timothy C. Coburn,et al.  Geographical Information Systems: Principles, Techniques, Applications and Management: 2nd Edition, Volumes 1 and 2, Paul A. Longley, Michael F. Goodchild, David J. Maguire and David W. Rhind (Eds.), 11240 pp., Wiley, New York, 1999, ISBN 0-471-32182-6, US $345.00 , 2000 .

[16]  P. Burrough,et al.  Geographic Objects with Indeterminate Boundaries , 1996 .

[17]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[18]  Marc van Kreveld,et al.  Algorithmic Foundations of Geographic Information Systems , 1997, Lecture Notes in Computer Science.

[19]  Michael F. Goodchild,et al.  Data from the Deep: Implications for the GIS Community , 1997, Int. J. Geogr. Inf. Sci..

[20]  Robert L. Ogniewicz,et al.  Discrete Voronoi skeletons , 1992 .

[21]  James E. Storbeck Recursive Procedures for the Spatial Structuring of Christaller Hierarchies , 1990 .

[22]  Christopher M. Gold,et al.  The Meaning of "Neighbour" , 1992, Spatio-Temporal Reasoning.

[23]  Nicholas M. Patrikalakis,et al.  Automated interrogation and adaptive subdivision of shape using medial axis transform , 1991 .

[24]  Setrag Khoshafian Object-oriented databases , 1993, Wiley professional computing.

[25]  Hideki Takayasu,et al.  Fractals in the Physical Sciences , 1990 .

[26]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[27]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[28]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[29]  C. Gold,et al.  A spatial data structure integrating GIS and simulation in a marine environment , 1995 .

[30]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Goze B. Bénié,et al.  Spatial analysis weighting algorithm using Voronoi diagrams , 2000, Int. J. Geogr. Inf. Sci..

[32]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[33]  Jun Chen,et al.  A Voronoi-based 9-intersection model for spatial relations , 2001, Int. J. Geogr. Inf. Sci..

[34]  R. van de Weygaert,et al.  Clustering paradigms and multifractal measures , 1990 .

[35]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[36]  Leila De Floriani,et al.  Delaunay-based representation of surfaces defined over arbitrarily shaped domains , 1985, Comput. Vis. Graph. Image Process..

[37]  D. Stoyan,et al.  Fractals, random shapes and point fields : methods of geometrical statistics , 1996 .

[38]  T. Tam,et al.  2D finite element mesh generation by medial axis subdivision , 1991 .

[39]  S. Arlinghaus Fractals Take a Central Place , 1985 .

[40]  J. Neyman,et al.  The Distribution of Galaxies , 1956 .