Explaining and Reformulating Authority Flow Queries

Authority flow is an effective ranking mechanism for answering queries on a broad class of data. Systems have been developed to apply this principle on the Web (PageRank and topic sensitive PageRank), bibliographic databases (ObjectRank), and biological databases (Hubs of Knowledge project). However, these systems have the following drawbacks: (a) There is no way to explain to the user why a particular result received its current score; (b) The authority flow rates, which have been shown to dramatically affect the results' quality in ObjectRank, have to be set manually by a domain expert; (c) There is no query reformulation methodology to refine the query results according to the user's preferences. In this work, we address these shortcomings by introducing a framework and algorithms to explain query results and reformulate authority flow queries based on the user's feedback. The query reformulation process can be used to learn the user's preferences and automatically adjust the authority flow rates to facilitate personalized authority flow searching. We experimentally evaluate our algorithms in terms of performance and quality.

[1]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[2]  Feng Shao,et al.  XRANK: ranked keyword search over XML documents , 2003, SIGMOD '03.

[3]  Gerard Salton,et al.  Optimization of relevance feedback weights , 1995, SIGIR '95.

[4]  Alan F. Smeaton,et al.  The Retrieval Effects of Query Expansion on a Feedback Document Retrieval System , 1983, Comput. J..

[5]  Tao Qin,et al.  A study of relevance propagation for web search , 2005, SIGIR '05.

[6]  Stephen E. Robertson,et al.  Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval , 1994, SIGIR '94.

[7]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[8]  Vagelis Hristidis,et al.  DISCOVER: Keyword Search in Relational Databases , 2002, VLDB.

[9]  James Allan,et al.  Automatic Query Expansion Using SMART: TREC 3 , 1994, TREC.

[10]  Donna K. Harman,et al.  Relevance Feedback and Other Query Modification Techniques , 1992, Information retrieval (Boston).

[11]  Jun Yang,et al.  TupleRank and Implicit Relationship Discovery in Relational Databases , 2003, WAIM.

[12]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[13]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[14]  Golan Yona,et al.  Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities , 2006, BMC Bioinformatics.

[15]  Soumen Chakrabarti,et al.  Learning to rank networked entities , 2006, KDD '06.

[16]  Taher H. Haveliwala Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search , 2003, IEEE Trans. Knowl. Data Eng..

[17]  Chris Buckley,et al.  Improving automatic query expansion , 1998, SIGIR '98.

[18]  Xin Fu,et al.  Elicitation of term relevance feedback: an investigation of term source and context , 2006, SIGIR.

[19]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[20]  Surajit Chaudhuri,et al.  DBXplorer: a system for keyword-based search over relational databases , 2002, Proceedings 18th International Conference on Data Engineering.

[21]  ChengXiang Zhai,et al.  Active feedback in ad hoc information retrieval , 2005, SIGIR '05.

[22]  Efthimis N. Efthimiadis,et al.  A user-centred evaluation of ranking algorithms for interactive query expansion , 1993, SIGIR.

[23]  Vagelis Hristidis,et al.  ObjectRank: a system for authority-based search on databases , 2006, SIGMOD Conference.

[24]  Jacques Savoy,et al.  Bayesian Inference Networks and Spreading Activation in Hypertext Systems , 1992, Inf. Process. Manag..

[25]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[26]  Sergei Vassilvitskii,et al.  Using web-graph distance for relevance feedback in web search , 2006, SIGIR.

[27]  Wei-Ying Ma,et al.  Object-level ranking: bringing order to Web objects , 2005, WWW '05.

[28]  Gareth J. F. Jones,et al.  Applying summarization techniques for term selection in relevance feedback , 2001, SIGIR '01.

[29]  Maria-Esther Vidal,et al.  Ranking target objects of navigational queries , 2006, WIDM '06.

[30]  Vagelis Hristidis,et al.  Authority-based keyword search in databases , 2008, TODS.

[31]  James Allan,et al.  The effect of adding relevance information in a relevance feedback environment , 1994, SIGIR '94.

[32]  Vagelis Hristidis,et al.  Keyword proximity search on XML graphs , 2003, Proceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).

[33]  Russ Bubley,et al.  Randomized algorithms , 2018, CSUR.