Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

This work addresses the task of integrating reflectarray antennas on thin-film solar cell panels, as a means to save real estate, weight or cost of platforms, such as satellites or transportable autonomous antenna systems. Reflectarray unit cell families, having large phase range, high optical transparency and low microwave loss, are designed to preserve their efficiency in terms of solar cell and reflectarray antenna efficiency. Because there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, both standard copper and transparent conductors were considered here. The results obtained at the unit cell level demonstrate, for the first time, the feasibility of integrating reflectarray on a thin-film solar cell, preserving good performance in terms of both solar cell and reflectarray efficiency. For instance, using copper, measurement at X-band demonstrates a phase range larger than 270 ° with an average microwave loss of 0.25 dB and average optical transparency in the visible spectrum of 85%. Using transparent conductor contributes to better average transparency (90%) at the cost of increase in microwave loss (2.45 dB).

[1]  V. Nair,et al.  Frequency-reconfigurable antennas for multiradio wireless platforms , 2009, IEEE Microwave Magazine.

[2]  M. Zawadzki,et al.  Integrated RF antenna and solar array for spacecraft application , 2000, Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No.00TH8510).

[3]  C. Guillén,et al.  TCO/metal/TCO structures for energy and flexible electronics , 2011 .

[4]  J. Perruisseau-Carrier,et al.  Unit Cell for Frequency-Tunable Beamscanning Reflectarrays , 2013, IEEE Transactions on Antennas and Propagation.

[5]  Hung-Hsuan Lin,et al.  High gain dual-band antenna using photovoltaic panel as metamaterial superstrate , 2011, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI).

[6]  Julien Perruisseau-Carrier,et al.  Design of a reflectarray element integrated in a Solar Cell panel , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[7]  Max J. Ammann,et al.  Transparent patch antenna on a-Si thin-film glass solar module , 2011 .

[8]  W. Sunrise Blvd Automatic Antenna Tuning Unit for Software-Defined and Cognitive Radio , 2007 .

[9]  P. Jarron,et al.  Radiation hard amorphous silicon particle sensors , 2005 .

[10]  J. Perruisseau-Carrier Dual-Polarized and Polarization-Flexible Reflective Cells With Dynamic Phase Control , 2010, IEEE Transactions on Antennas and Propagation.

[11]  Julien Perruisseau-Carrier,et al.  Contributions to the Modeling and Design of Reconfigurable Reflecting Cells Embedding Discrete Control Elements , 2010, IEEE Transactions on Microwave Theory and Techniques.

[12]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[13]  Koichi Ito,et al.  Antennas Made of Transparent Conductive Films , 2008 .

[14]  P. McEvoy,et al.  Integration of Inverted-F antenna with solar cell substitute , 2012, 2012 Loughborough Antennas & Propagation Conference (LAPC).

[15]  C. Tomassoni,et al.  Preliminary design of foldable reconfigurable reflectarray for Ku-band satellite communication , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[16]  R. Baktur,et al.  Meshed Patch Antennas Integrated on Solar Cells , 2009, IEEE Antennas and Wireless Propagation Letters.

[17]  S. Vaccaro,et al.  Thin-film silicon solar cells for space applications: radiation hardness and applications for an integrated Solant (solar cell-antenna) module , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[18]  Kin-Lu Wong,et al.  Uni-Planar Dual-Band Monopole Antenna for 2.4/5 GHz WLAN Operation in the Laptop Computer , 2007, IEEE Transactions on Antennas and Propagation.

[19]  Kin-Lu Wong,et al.  Multiband Printed Monopole Slot Antenna for WWAN Operation in the Laptop Computer , 2009, IEEE Transactions on Antennas and Propagation.

[20]  Mahmoud N. Mahmoud,et al.  Integrated Solar Panel Antennas for Cube Satellites , 2010 .

[21]  D. Domine,et al.  Ultra-Light Amorphous Silicon Cell for Space Applications , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[22]  Sean Victor Hum,et al.  Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review , 2013, IEEE Transactions on Antennas and Propagation.

[23]  P. Maagt,et al.  Two advanced solar antenna "SOLANT" designs for satellite and terrestrial communications , 2003 .

[24]  Kin-Lu Wong,et al.  Internal printed loop/monopole combo antenna for LTE/GSM/UMTS operation in the laptop computer , 2010 .

[25]  J. Costantine,et al.  Demonstration of a Cognitive Radio Front End Using an Optically Pumped Reconfigurable Antenna System (OPRAS) , 2012, IEEE Transactions on Antennas and Propagation.

[26]  T. Moriarty,et al.  High-efficiency amorphous and "micromorph" silicon solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.