Bounds on the Length of Functional PIR and Batch Codes

A <italic>functional k-Private Information Retrieval (k</italic>-PIR) <italic>code</italic> of dimension <italic>s</italic> consists of <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> servers storing linear combinations of <italic>s</italic> linearly independent information symbols. Any linear combination of the <italic>s</italic> information symbols can be recovered by <italic>k</italic> disjoint subsets of servers. The goal is to find the minimum number of servers for given <italic>k</italic> and <italic>s</italic>. We provide lower bounds on the minimum number of servers and constructions which yield upper bounds on this number. For <italic>k</italic> ≤ 4, exact bounds on this number are proved. Furthermore, we provide some asymptotic bounds. The problem coincides with the well known PIR problem based on a coded database to reduce the storage overhead, when each linear combination contains exactly one information symbol. If any multiset of size <italic>k</italic> of linear combinations from the linearly independent information symbols can be recovered by <italic>k</italic> disjoint subset of servers, then the servers form a <italic>functional</italic> <italic>k</italic> <italic>-batch code</italic>. A functional <italic>k</italic>-batch code is a functional <italic>k</italic>-PIR code, where all the <italic>k</italic> linear combinations in the multiset are equal. We provide some bounds on the minimum number of servers for functional <italic>k</italic>-batch codes. In particular we present a random construction and a construction based on simplex codes, Write-Once Memory (WOM) codes, and Random I/O (RIO) codes.

[1]  Alexander Vardy,et al.  Lower Bound on the Redundancy of PIR Codes , 2016, ArXiv.

[2]  Adi Shamir,et al.  How to Reuse a "Write-Once" Memory , 1982, Inf. Control..

[3]  Frank Wang,et al.  Splinter: Practical Private Queries on Public Data , 2017, NSDI.

[4]  Mahtab Mirmohseni,et al.  Private function retrieval , 2017, 2018 Iran Workshop on Communication and Information Theory (IWCIT).

[5]  Paul H. Siegel,et al.  Consecutive switch codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[6]  Alexandros G. Dimakis,et al.  Batch codes through dense graphs without short cycles , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Abdullatif Shikfa,et al.  A Storage-Efficient and Robust Private Information Retrieval Scheme Allowing Few Servers , 2014, CANS.

[8]  Srinath T. V. Setty,et al.  Scalable and Private Media Consumption with Popcorn , 2016, NSDI.

[9]  Eitan Yaakobi,et al.  Nearly optimal constructions of PIR and batch codes , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[10]  Eitan Yaakobi,et al.  Constructions of batch codes with near-optimal redundancy , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[11]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[12]  Eitan Yaakobi,et al.  PIR with Low Storage Overhead: Coding instead of Replication , 2015, ArXiv.

[13]  Dimitris S. Papailiopoulos,et al.  Locality and Availability in Distributed Storage , 2014, IEEE Transactions on Information Theory.

[14]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[15]  Han Mao Kiah,et al.  Optimal binary switch codes with small query size , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[16]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[17]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[18]  L. Litwin,et al.  Error control coding , 2001 .

[19]  Hiroshi Kamabe,et al.  Construction of Parallel Random I/O Codes Using Coset Coding with Hamming Codes , 2018, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[20]  P. Godlewski,et al.  WOM-code constructs from Hamming codes , 1987 .

[21]  Eitan Yaakobi,et al.  Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[22]  Colin Cooper,et al.  On the rank of random matrices , 2000, Random Struct. Algorithms.

[23]  Gérard D. Cohen,et al.  Covering Codes , 2005, North-Holland mathematical library.

[24]  Philippe Godlewski Wom-codes construits à partir des codes de hamming , 1987, Discret. Math..

[25]  Jehoshua Bruck,et al.  Codes for network switches , 2013, 2013 IEEE International Symposium on Information Theory.

[26]  Nikita Polyanskii,et al.  Constructions of Batch Codes via Finite Geometry , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[27]  Vinayak Ramkumar,et al.  Binary, shortened projective reed muller codes for coded private information retrieva , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[28]  Eitan Yaakobi,et al.  Construction of Random Input-Output Codes With Moderate Block Lengths , 2016, IEEE Transactions on Communications.

[29]  Jehoshua Bruck,et al.  Switch Codes: Codes for Fully Parallel Reconstruction , 2017, IEEE Transactions on Information Theory.

[30]  Gérard D. Cohen,et al.  Linear binary code for write-once memories , 1986, IEEE Trans. Inf. Theory.

[31]  Rafail Ostrovsky,et al.  Batch codes and their applications , 2004, STOC '04.

[32]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[33]  Hui Zhang,et al.  Combinatorial systematic switch codes , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[34]  Alexander Vardy,et al.  Error-correcting codes in projective space , 2008, 2008 IEEE International Symposium on Information Theory.

[35]  Hua Sun,et al.  The Capacity of Private Computation , 2018, 2018 IEEE International Conference on Communications (ICC).

[36]  Hsuan-Yin Lin,et al.  Lengthening and Extending Binary Private Information Retrieval Codes , 2017, ArXiv.

[37]  David A. Karpuk,et al.  Private Polynomial Computation from Lagrange Encoding , 2019, 2019 IEEE International Symposium on Information Theory (ISIT).

[38]  Eran Sharon,et al.  Coding Scheme for Optimizing Random I/O Performance , 2012, ArXiv.

[39]  Paul H. Siegel,et al.  Codes for Write-Once Memories , 2012, IEEE Transactions on Information Theory.