Design and Optimization of a Nanotip Sensor via Immersed Molecular Electrokinetic Finite Element Method

A critical challenge in the field of medicine is to develop a low cost sensor competent of detecting specific bacterial pathogens via a precise deoxyribonucleic acid (DNA) sequence. In order to identify such biological agents in a patient’s blood or other bodily fluids at the onset of infection, detection of specific pathogen genomic DNA is considered a reliable approach. Current techniques involving multiplex DNA/RNA detection arrays or immunoassays [1] require cumbersome sample preparation, aggressive nucleic acid amplification protocols and must be operated by trained personnel. To overcome the aforementioned obstacles, a time-dependent dielectrophoretic force driven sensor consisting of nanostructured tip is being developed.Copyright © 2010 by ASME