He, Ne and Ar isotope compositions of fluid inclusions in hydrothermal sulfides from the TAG hydrothermal field Mid-Atlantic Ridge

[1]  C. You,et al.  Evolution of an active sea-floor massive sulphide deposit , 1998, Nature.

[2]  F. Stuart,et al.  Mantle-derived 40Ar in mid-ocean ridge hydrothermal fluids: implications for the source of volatiles and mantle degassing rates , 1998 .

[3]  J. Erzinger,et al.  Noble gas evidence for a lower mantle component in MORBs from the southern East Pacific Rise: Decoup , 1997 .

[4]  J. Charlou,et al.  Gases and helium isotopes in high temperature solutions sampled before and after ODP Leg 158 Drilling at TAG Hydrothermal Field (26°N, MAR) , 1996 .

[5]  C. German,et al.  Continuation of the hydrothermal fluid chemistry time series at TAG, and the effects of ODP drilling , 1996 .

[6]  W. Bryan,et al.  Petrology of basaltic glasses from the TAG Segment: Implications for a deep hydrothermal heat source , 1996 .

[7]  A. Schultz,et al.  Mid-Ocean Ridge Hydrothermal Fluxes and the Chemical Composition of the Ocean , 1996 .

[8]  J. Reyss,et al.  Hydrothermal activity on a 105‐year scale at a slow‐spreading ridge, TAG hydrothermal field, Mid‐Atlantic Ridge 26°N , 1995 .

[9]  F. Stuart,et al.  Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides , 1994 .

[10]  R. K. O’nions,et al.  Behaviour and residence times of lithophile and rare gas tracers in the upper mantle , 1994 .

[11]  Y. Fouquet,et al.  New age data for Mid‐Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited , 1993 .

[12]  H. Elderfield,et al.  Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23°N, Mid-Atlantic Ridge , 1992 .

[13]  F. Stuart,et al.  Helium/heat ratios and deposition temperatures of sulphides from the ocean floor , 1992, Nature.

[14]  B. Marty,et al.  Noble gases in submarine glasses from mid-oceanic ridges and Loihi seamount: Constraints on the early history of the Earth , 1992 .

[15]  G. Massoth,et al.  Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid‐rock interaction , 1990 .

[16]  E. Baker,et al.  Changes in submarine hydrothermal 3He/heat ratios as an indicator of magmatic/tectonic activity , 1990, Nature.

[17]  B. Marty Neon and xenon isotopes in MORB: implications for the earth-atmosphere evolution , 1989 .

[18]  T. Staudacher,et al.  Neon isotopes in submarine basalts , 1988 .

[19]  S. Humphris,et al.  Active vents and massive sulfides at 26 degrees N (TAG) and 23 degrees N (Snakepit) on the Mid-Atlantic Ridge , 1988 .

[20]  P. Rona,et al.  Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge , 1986, Nature.

[21]  M. Kurz,et al.  Helium isotopic variations in the mantle beneath the central North Atlantic Ocean , 1982 .

[22]  M. Hannington,et al.  Geochemistry and sulfur-isotopic composition of the TAG hydrothermal mound, Mid-Atlantic Ridge, 26°N , 1998 .

[23]  J. Reyss,et al.  9. AGE OF SUB-BOTTOM SULFIDE SAMPLES AT THE TAG ACTIVE MOUND 1 , 1998 .

[24]  Y. Fouquet,et al.  Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13 °N , 1996 .

[25]  F. Stuart,et al.  19. HELIUM AND SULFUR ISOTOPES OF SULFIDE MINERALS FROM MIDDLE VALLEY, NORTHERN JUAN DE FUCA RIDGE1 , 1994 .

[26]  T. Staudacher,et al.  Rare gas systematics: formation of the atmosphere, evolution and structure of the Earth's mantle , 1987 .

[27]  C. Langmuir,et al.  A general mixing equation with applications to Icelandic basalts , 1978 .