Line list of 12CH4 in the 4300–4600 cm−1 region

[1]  I. Gordon,et al.  An Accurate, Extensive, and Practical Line List of Methane for the HITEMP Database , 2020, The Astrophysical Journal Supplement Series.

[2]  S. Tashkun,et al.  Improved line list of 12CH4 in the 3760–4100 cm−1 region , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[3]  A. E. Protasevich,et al.  Assignment and modelling of 12CH4 spectra in the 5550–5695, 5718–5725 and 5792–5814 cm−1 regions , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[4]  A. Nikitin,et al.  The methane absorption spectrum near 1.73 µm (5695–5850 cm−1): Empirical line lists at 80 K and 296 K and rovibrational assignments , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[5]  A. Nikitin,et al.  New accurate theoretical line lists of 12 CH 4 and 13 CH 4 in the 0-13400 cm- 1 range: Application to the modeling of methane absorption in Titan's atmosphere , 2018 .

[6]  V. P. Kochanov,et al.  Methane line shapes and spectral line parameters in the 5647 – 6164 cm −1 region , 2018 .

[7]  A. Nikitin,et al.  Analysis of the absorption spectrum of 12 CH 4 in the region 5855-6250 cm -1 of the 2ν 3 band , 2017 .

[8]  A. Nikitin,et al.  Accurate line intensities of methane from first-principles calculations , 2017 .

[9]  A. Nikitin,et al.  Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications , 2017 .

[10]  J. Tennyson,et al.  A hybrid line list for CH4 and hot methane continuum. , 2017, Astronomy and astrophysics.

[11]  I. Gordon,et al.  HITRAN spectroscopy evaluation using solar occultation FTIR spectra , 2016 .

[12]  A. Nikitin,et al.  First fully ab initio potential energy surface of methane with a spectroscopic accuracy , 2016 .

[13]  J. Tennyson,et al.  A highly accurate ab initio potential energy surface for methane. , 2016, The Journal of chemical physics.

[14]  Philippe Bousquet,et al.  Rising atmospheric methane: 2007–2014 growth and isotopic shift , 2016 .

[15]  Y. Babikov,et al.  TheoReTS – An information system for theoretical spectra based on variational predictions from molecular potential energy and dipole moment surfaces , 2016 .

[16]  Jonathan Tennyson,et al.  The 2015 edition of the GEISA spectroscopic database , 2016 .

[17]  A. Nikitin,et al.  Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853–6201 cm−1) , 2016 .

[18]  V. M. Devi,et al.  Spectral line parameters including line shapes in the 2ν3 Q branch of 12CH4 , 2016 .

[19]  L. Brown,et al.  Measurements and modeling of cold 13CH4 spectra in the 3750–4700 cm−1 region , 2016 .

[20]  V. Boudon,et al.  Global analysis of the high temperature infrared emission spectrum of (12)CH4 in the dyad (ν2/ν4) region. , 2016, The Journal of chemical physics.

[21]  A. Nikitin,et al.  Ab initio variational predictions for understanding highly congested spectra: rovibrational assignment of 108 new methane sub-bands in the icosad range (6280-7800 cm(-1)). , 2016, Physical chemistry chemical physics : PCCP.

[22]  P. Bernath,et al.  EMPIRICAL LINE LISTS AND ABSORPTION CROSS SECTIONS FOR METHANE AT HIGH TEMPERATURES , 2015, 1510.06982.

[23]  A. Nikitin,et al.  Convergence of normal mode variational calculations of methane spectra: Theoretical linelist in the icosad range computed from potential energy and dipole moment surfaces , 2015 .

[24]  V. M. Devi,et al.  Self- and air-broadened line shapes in the 2ν3 P and R branches of 12CH4 , 2015 .

[25]  A. Nikitin,et al.  First predictions of rotationally resolved infrared spectra of dideuteromethane ((12)CH2D2) from potential energy and dipole moment surfaces. , 2015, The journal of physical chemistry. A.

[26]  A. Nikitin,et al.  An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: tetrahedral molecules. , 2015, The Journal of chemical physics.

[27]  Hua Guo,et al.  Explicitly correlated MRCI-F12 potential energy surfaces for methane fit with several permutation invariant schemes and full-dimensional vibrational calculations , 2015 .

[28]  S. Mikhailenko,et al.  GOSAT-2014 methane spectral line list , 2015 .

[29]  V. M. Devi,et al.  Self- and air-broadened line shape parameters in the ν2+ν3 band of 12CH4: 4500–4630 cm−1 , 2015 .

[30]  M. Quack,et al.  Survey of the high resolution infrared spectrum of methane ((12)CH4 and (13)CH4): partial vibrational assignment extended towards 12,000 cm(-1.). , 2014, The Journal of chemical physics.

[31]  B. Bézard The methane mole fraction in Titan’s stratosphere from DISR measurements during the Huygens probe’s descent , 2014 .

[32]  A. Nikitin,et al.  Accurate first-principles calculations for 12CH3D infrared spectra from isotopic and symmetry transformations. , 2014, The Journal of chemical physics.

[33]  A. Nikitin,et al.  THEORETICAL HOT METHANE LINE LISTS UP TO T = 2000 K FOR ASTROPHYSICAL APPLICATIONS , 2014 .

[34]  A. Nikitin,et al.  Measurements and modeling of long-path 12 CH 4 spectra in the 5300-5550 cm -1 region , 2014 .

[35]  P. Bernath Molecular opacities for exoplanets , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  Sergei N. Yurchenko,et al.  ExoMol line lists IV: The rotation-vibration spectrum of methane up to 1500 K , 2014, 1401.4852.

[37]  Christian Herbeaux,et al.  A rugged, high precision capacitance diaphragm low pressure gauge for cryogenic use. , 2014, The Review of scientific instruments.

[38]  A. Nikitin,et al.  Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations. , 2013, The journal of physical chemistry. A.

[39]  Vincent Boudon,et al.  MeCaSDa and ECaSDa: Methane and ethene calculated spectroscopic databases for the virtual atomic and molecular data centre , 2013 .

[40]  V. M. Devi,et al.  Methane line parameters in the HITRAN2012 database , 2013 .

[41]  T. Encrenaz,et al.  Spectroscopy of planetary atmospheres in our Galaxy , 2013 .

[42]  J. Flaud,et al.  A new, low temperature long-pass cell for mid-infrared to terahertz spectroscopy and synchrotron radiation use. , 2013, The Review of scientific instruments.

[43]  A. Nikitin,et al.  Predictions for methane spectra from potential energy and dipole moment surfaces: Isotopic shifts and comparative study of 13CH4 and 12CH4 , 2013 .

[44]  D. Mondelain,et al.  The WKLMC empirical line lists (5852–7919 cm−1) for methane between 80 K and 296 K: “Final” lists for atmospheric and planetary applications , 2013 .

[45]  P. Cassam-Chenaï,et al.  An improved third order dipole moment surface for methane , 2013 .

[46]  T. Carrington,et al.  Analysis of the rovibrational spectrum of 13CH4 in the Octad range , 2013 .

[47]  V. Boudon,et al.  High resolution spectroscopy and the first global analysis of the Tetradecad region of methane 12CH4. , 2013, Physical chemistry chemical physics : PCCP.

[48]  A. Nikitin,et al.  First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm(-1). , 2013, Physical chemistry chemical physics : PCCP.

[49]  A. Nikitin,et al.  New dipole moment surfaces of methane , 2013 .

[50]  V. Boudon,et al.  New assignments in the 2 μm transparency window of the 12CH4 Octad band system , 2013 .

[51]  A. Nikitin,et al.  Complete nuclear motion Hamiltonian in the irreducible normal mode tensor operator formalism for the methane molecule. , 2012, The Journal of chemical physics.

[52]  P. Cassam-Chenaï,et al.  Ab initio calculation of the rotational spectrum of methane vibrational ground state. , 2012, The Journal of chemical physics.

[53]  P. Drossart,et al.  Titan's surface and atmosphere from Cassini/VIMS data with updated methane opacity , 2012 .

[54]  V. Boudon,et al.  Comparison of line-by-line and band models of near-IR methane absorption applied to outer planet atmospheres , 2012 .

[55]  P. Drossart,et al.  Applications of a new set of methane line parameters to the modeling of Titan’s spectrum in the 1.58 μm window , 2012 .

[56]  A. Nikitin,et al.  Extension of the MIRS computer package for the modeling of molecular spectra: From effective to full ab initio ro-vibrational Hamiltonians in irreducible tensor form , 2012, 1201.2418.

[57]  V. Perevalov,et al.  Measurements of self-broadening and self-pressure-induced shift parameters of the methane spectral lines in the 5556–6166 cm−1 range , 2011 .

[58]  A. Nikitin,et al.  Rotational and vibrational energy levels of methane calculated from a new potential energy surface , 2011 .

[59]  S. Mikhailenko,et al.  GOSAT-2009 methane spectral line list in the 5550–6236 cm−1 range , 2010 .

[60]  A. Coustenis,et al.  Titan trace gaseous composition from CIRS at the end of the Cassini–Huygens prime mission , 2010 .

[61]  A. Nikitin,et al.  Measurements of N2-and O2-broadening and shifting parameters of methane spectral lines in the 5550-6236 cm-1 region , 2009 .

[62]  V. Boudon,et al.  Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm−1 , 2009 .

[63]  Peter Bergamaschi,et al.  Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 2: Methane , 2008 .

[64]  Peter Bergamaschi,et al.  Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations , 2007 .

[65]  Peter Bergamaschi,et al.  Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: version 0.5 CO and CH 4 and impact of calibration improvements on CO 2 retrieval , 2006 .

[66]  Peter Bergamaschi,et al.  Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: Analysis of the years 2003 and 2004 , 2006 .

[67]  S. Debei,et al.  In situ measurements of the physical characteristics of Titan's environment , 2005, Nature.

[68]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[69]  L. Brown,et al.  Empirical line parameters of methane from 1.1 to 2.1 μm , 2005 .

[70]  L. Brown,et al.  Analysis of the Interacting Octad System of (12)CH(4). , 2001, Journal of molecular spectroscopy.

[71]  J. Champion,et al.  Spherical top data system (STDS) software for the simulation of spherical top spectra , 1998 .

[72]  Brown,et al.  The Hot Bands of Methane between 5 and 10 μm , 1996, Journal of molecular spectroscopy.

[73]  S. Tashkun,et al.  New Analysis of the Pentad System of Methane and Prediction of the (Pentad-Pentad) Spectrum , 1994 .

[74]  Jean-Paul Champion,et al.  T.D.S. spectroscopic databank for spherical tops: DOS version , 1994 .

[75]  L. Brown,et al.  The vibrational ground state of 12CH4 and 13CH4 , 1989 .

[76]  V. M. Devi,et al.  Spectroscopic line parameters of 12 CH 4 for atmospheric composition retrievals in the 4300-4500 cm -1 region , 2017 .

[77]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[78]  A. Nikitin,et al.  First assignment of the 5ν4 and ν2+4ν4 band systems of 12CH4 in the 6287–6550 cm−1 region , 2011 .

[79]  A. Weber,et al.  Spectroscopy of the Earth's Atmosphere and Interstellar Medium , 1992 .