Theoretical models and experimental data suggest that the particle size distribution of lead aerosols should affect the lead dose absorbed by exposed workers. In the present study, 44 workers in five major operations in a high-volume, lead-acid battery plant were studied for the influence of lead aerosol size on lead-in-blood (PbB) levels. A multiple linear regression analysis based on particle size assumptions made in the model used by the Occupational Safety and Health Administration to help select the permissible exposure level (PEL) for lead showed no improvement in prediction of PbB over that already present without any consideration of particle size. The use of the American Conference of Governmental Industrial Hygienists (ACGIH) regional size-selective criteria also failed to improve the prediction of PbB. However, when deposition models developed by Heyder et al were used in which the lead aerosol was separated into alveolar and extra-alveolar fractions, corresponding to what is considered respirable and ingestible lead, the coefficient of determination (R2) associated with the fractionated lead particulate increased approximately 25% over that attributable to only the total lead concentration. In addition, the deposition model, which closely matched the ACGIH reference worker criteria, resulted in ratios of the coefficients for the respirable to ingestible lead contributions to PbB that appeared to agree with experimental data, suggesting approximately a 10 to 1 ratio in absorption efficiency of the lung versus the gastrointestinal tract.