Identification of High-Tech Motion Systems: An Active Vibration Isolation Benchmark

The benchmark Active Vibration Isolation System (AVIS) in this paper is a complex high-tech industrial system used in vibration and motion control applications. The system is complex in the sense of high order exible dynamics and multiple inputs and outputs. The aim of this benchmark is to compare difierent black box, linear time invariant system identification algorithms. Difierent large data sets are provided, enabling the use of both frequency domain and time domain identification approaches. The idea of the benchmark is to investigate both model accuracy and numerical reliability of the computational steps. Several reference solutions are provided, which demonstrate the challenging aspects of this benchmark already in the singleinput single-output case. The benchmark data and additional info are available on the website of Tom Oomen.

[1]  Maarten Steinbuch,et al.  Optimally conditioned instrumental variable approach for frequency-domain system identification , 2014, Autom..

[2]  Håkan Hjalmarsson,et al.  Iterative Data-Driven ${\cal H}_{\infty}$ Norm Estimation of Multivariable Systems With Application to Robust Active Vibration Isolation , 2014, IEEE Transactions on Control Systems Technology.

[3]  R. Pintelon,et al.  On the frequency scaling in continuous-time modeling , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[4]  Ioan Doré Landau,et al.  Benchmark on adaptive regulation - rejection of unknown/time-varying multiple narrow band disturbances , 2013, Eur. J. Control.

[5]  Michel Verhaegen,et al.  Maximum likelihood identification of multivariable bilinear state-space systems by projected gradient search , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[7]  Paul M. J. Van den Hof,et al.  Multivariable frequency domain identification using IV-based linear regression , 2010, 49th IEEE Conference on Decision and Control (CDC).

[8]  Johan Schoukens,et al.  Enhancing H-Infinity Norm Estimation Using Local LPM/LRM Modeling: Applied to an AVIS , 2014 .

[9]  Pramod P. Khargonekar,et al.  Application of identification in 𝒽∞ to lightly damped systems: two case studies , 1995, IEEE Trans. Control. Syst. Technol..

[10]  Marc M. J. van de Wal,et al.  Connecting System Identification and Robust Control for Next-Generation Motion Control of a Wafer Stage , 2014, IEEE Transactions on Control Systems Technology.

[11]  Brett Ninness,et al.  Practical Aspects of Using Orthonormal System Parameterisations in Estimation Problems , 2000 .

[12]  H. Butler,et al.  Position control in lithographic equipment , 2013 .

[13]  Hans Butler,et al.  Position Control in Lithographic Equipment [Applications of Control] , 2011, IEEE Control Systems.

[14]  Alessandro Chiuso,et al.  On the ill-conditioning of subspace identification with inputs , 2004, Autom..

[15]  M Maarten Steinbuch,et al.  Industrial perspective on robust control: Application to storage systems , 1997 .

[16]  Paul M.J. Van den Hof,et al.  Frequency domain curve fitting with maximum amplitude criterion and guaranteed stability , 1994 .

[17]  Håkan Hjalmarsson,et al.  Model structure and numerical properties of normal equations , 1999 .

[18]  Okko H. Bosgra,et al.  Multivariable feedback control design for high-precision wafer stage motion , 2002 .

[19]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[20]  Yves Rolain,et al.  Numerically robust transfer function modeling from noisy frequency domain data , 2005, IEEE Transactions on Automatic Control.

[21]  Dean Karnopp,et al.  Active and semi-active vibration isolation , 1995 .