Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products

Many species of microalgae have been used as source of nutrient rich food, feed, and health promoting compounds. Among the commercially important microalgae, Haematococcus pluvialis is the richest source of natural astaxanthin which is considered as “super anti-oxidant.” Natural astaxanthin produced by H. pluvialis has significantly greater antioxidant capacity than the synthetic one. Astaxanthin has important applications in the nutraceuticals, cosmetics, food, and aquaculture industries. It is now evident that, astaxanthin can significantly reduce free radicals and oxidative stress and help human body maintain a healthy state. With extraordinary potency and increase in demand, astaxanthin is one of the high-value microalgal products of the future.This comprehensive review summarizes the most important aspects of the biology, biochemical composition, biosynthesis, and astaxanthin accumulation in the cells of H. pluvialis and its wide range of applications for humans and animals. In this paper, important and recent developments ranging from cultivation, harvest and postharvest bio-processing technologies to metabolic control and genetic engineering are reviewed in detail, focusing on biomass and astaxanthin production from this biotechnologically important microalga. Simultaneously, critical bottlenecks and major challenges in commercial scale production; current and prospective global market of H. pluvialis derived astaxanthin are also presented in a critical manner. A new biorefinery concept for H. pluvialis has been also suggested to guide toward economically sustainable approach for microalgae cultivation and processing. This report could serve as a useful guide to present current status of knowledge in the field and highlight key areas for future development of H. pluvialis astaxanthin technology and its large scale commercial implementation.

[1]  M. Goto,et al.  Extraction of Astaxanthin from Haematococcus p luvialis Using Supercritical CO 2 and Ethanol as Entrainer , 2006 .

[2]  E. Torres,et al.  Production and analysis of secondary carotenoids in green algae , 2000, Journal of Applied Phycology.

[3]  Artiwan Shotipruk,et al.  Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. , 2008, Bioresource technology.

[4]  Maurycy Daroch,et al.  Recent advances in liquid biofuel production from algal feedstocks , 2013 .

[5]  Gokare A. Ravishankar,et al.  An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. , 2006, Journal of agricultural and food chemistry.

[6]  H. Linden Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. , 1999, Biochimica et biophysica acta.

[7]  Feng Chen,et al.  Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions , 1997 .

[8]  Artiwan Shotipruk,et al.  Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. , 2008, Bioresource technology.

[9]  Georgios Panis,et al.  Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line , 2016 .

[10]  Hartmut K. Lichtenthaler,et al.  Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants , 1997 .

[11]  Shiro Nagai,et al.  Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis , 1993, Applied and environmental microbiology.

[12]  Gokare A. Ravishankar,et al.  Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions , 2002 .

[13]  S. Nagai,et al.  Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis , 1992 .

[14]  A. Vonshak,et al.  Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1 , 1991 .

[15]  Timothy Y James,et al.  Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus. , 2008, Mycological research.

[16]  L. Kupčinskas,et al.  Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: A prospective, randomized, double blind, and placebo-controlled study. , 2008, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[17]  J. Salonen,et al.  Effects of astaxanthin supplementation on lipid peroxidation. , 2007, International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.

[18]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[19]  B. Chew,et al.  Carotenoid action on the immune response. , 2004, The Journal of nutrition.

[20]  Jun Wang,et al.  The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light-dark cyclic cultivation. , 2014, Bioresource technology.

[21]  Q. Hu,et al.  Comparative analyses of lipidomes and transcriptomes reveal a concerted action of multiple defensive systems against photooxidative stress in Haematococcus pluvialis , 2014, Journal of experimental botany.

[22]  C. Coman,et al.  ASTAXANTHIN PRODUCTION FROM A NEW STRAIN OF HAEMATOCOCCUS PLUVIALIS GROWN IN BATCH CULTURE , 2010 .

[23]  Q. Hu,et al.  Biology and Commercial Aspects of Haematococcus pluvialis , 2013 .

[24]  Han Sun,et al.  Enhancement of cell biomass and cell activity of astaxanthin-rich Haematococcus pluvialis. , 2015, Bioresource technology.

[25]  G. Feijoo,et al.  Life cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale , 2014 .

[26]  Artiwan Shotipruk,et al.  Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. , 2007, Bioresource technology.

[27]  F. Salamini,et al.  Biotechnology for a more sustainable world. , 2012, Biotechnology advances.

[28]  Gokare A. Ravishankar,et al.  Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. , 2013, Journal of agricultural and food chemistry.

[29]  R. Asadpour,et al.  Effects of Haematococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout (Oncorhynchus mykiss). , 2012, Animal reproduction science.

[30]  F. Goycoolea,et al.  Astaxanthin: A Review of its Chemistry and Applications , 2006, Critical reviews in food science and nutrition.

[31]  W. Miki,et al.  Biological functions and activities of animal carotenoids , 1991 .

[32]  C. Popovich,et al.  Feedstocks for Second-Generation Biodiesel: Microalgae’s Biology and Oil Composition , 2011 .

[33]  Ingrid Inostroza,et al.  From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin , 2013, AoB PLANTS.

[34]  M. Koller,et al.  Microalgae as versatile cellular factories for valued products , 2014 .

[35]  Lei Chen,et al.  Expression of fatty acid synthesis genes and fatty acid accumulation in haematococcus pluvialis under different stressors , 2012, Biotechnology for Biofuels.

[36]  Gokare A. Ravishankar,et al.  Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. , 2008, European journal of pharmacology.

[37]  F Chen,et al.  Kinetic models for astaxanthin production by high cell density mixotrophic culture of the microalga Haematococcus pluvialis , 1999, Journal of Industrial Microbiology and Biotechnology.

[38]  Lu Fan,et al.  Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis , 1992 .

[39]  J. Waterbury,et al.  Generic assignments, strain histories, and properties of pure cultures of cyanobacteria , 1979 .

[40]  C. Vílchez,et al.  Microalgae: Fast-Growth Sustainable Green Factories , 2015 .

[41]  S. Boussiba Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response , 2000 .

[42]  M. S. Sinclair,et al.  Net energy analysis , 1978 .

[43]  A. Zarka,et al.  Advanced methods for genetic engineering of Haematococcus pluvialis (Chlorophyceae, Volvocales) , 2015 .

[44]  R. Lovitt,et al.  Placing microalgae on the biofuels priority list: a review of the technological challenges , 2010, Journal of The Royal Society Interface.

[45]  C. Aflalo,et al.  On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. , 2007, Biotechnology and bioengineering.

[46]  Yasuo Ochi,et al.  The influence of stress , 2004 .

[47]  N. Tourasse,et al.  The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. , 2015, Annual review of plant biology.

[48]  E. Gantt,et al.  GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. , 1998, Annual review of plant physiology and plant molecular biology.

[49]  Jianguo Liu,et al.  Impact of astaxanthin-enriched algal powder of Haematococcus pluvialis on memory improvement in BALB/c mice , 2007, Environmental geochemistry and health.

[50]  A. Hemmerlin,et al.  Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. , 2002, The Biochemical journal.

[51]  Lingling Chen,et al.  Differential Expression of Carotenogenic Genes, Associated Changes on Astaxanthin Production and Photosynthesis Features Induced by JA in H. pluvialis , 2012, PloS one.

[52]  Shiro Nagai,et al.  Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions , 1992 .

[53]  Jo‐Shu Chang,et al.  Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier , 2012 .

[54]  Shiro Nagai,et al.  Hyper-accumulation of astaxanthin in a green algaHaematococcus pluvialis at elevated temperatures , 1994, Biotechnology Letters.

[55]  José O. Valderrama,et al.  Extraction of Astaxantine and Phycocyanine from Microalgae with Supercritical Carbon Dioxide , 2003 .

[56]  Xuebo Liu,et al.  Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. , 2007, Biochemical and biophysical research communications.

[57]  Lu Fan,et al.  EFFECT OF TEMPERATURE AND IRRADIANCE ON GROWTH OF HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) 1 , 1994 .

[58]  Dennis Lara Hernández,et al.  of for , 2007 .

[59]  Makio Kobayashi,et al.  Selective extraction of astaxanthin and chlorophyll from the green alga Haematococcus pluvialis , 1997 .

[60]  R T Lorenz,et al.  Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. , 2000, Trends in biotechnology.

[61]  Prasert Pavasant,et al.  Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. , 2009, Journal of biotechnology.

[62]  Alejandro Cifuentes,et al.  Pressurized liquids as an alternative process to antioxidant carotenoids' extraction from Haematococcus pluvialis microalgae , 2010 .

[63]  Roberto E. Armenta,et al.  Developments in oil extraction from microalgae. , 2011 .

[64]  S. Sim,et al.  Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis , 2011, Bioprocess and Biosystems Engineering.

[65]  F. G. Acién,et al.  Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. , 2009, Biotechnology and bioengineering.

[66]  T. Lane,et al.  Parasites in algae mass culture , 2014, Front. Microbiol..

[67]  J. Mesquita,et al.  Ultrastructural Study of Haematococcus lacustris (Girod.) Rostafinski (Volvocales) II , 1984 .

[68]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[69]  A. Zarka,et al.  Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. , 2012, Applied Microbiology and Biotechnology.

[70]  Y. K. Lee,et al.  Effect of total secondary carotenoids extracts from Chlorococcum sp on Helicobacter pylori-infected BALB/c mice. , 2003, International immunopharmacology.

[71]  S. Han,et al.  Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation , 2010, Bioprocess and biosystems engineering.

[72]  Gokare A. Ravishankar,et al.  Optimization of culture conditions for growth of the green alga Haematococcus pluvialis , 2002 .

[73]  Q. Hu,et al.  Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor , 2012, Journal of Applied Phycology.

[74]  Jay J. Cheng,et al.  Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds. , 2015, New biotechnology.

[75]  C. Gachon,et al.  Erratum to: A new flagellated dispersion stage in Paraphysoderma sedebokerense, a pathogen of Haematococcus pluvialis , 2015, Journal of Applied Phycology.

[76]  Tianzhong Liu,et al.  Attached cultivation of Haematococcus pluvialis for astaxanthin production. , 2014, Bioresource technology.

[77]  C. Meng,et al.  Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production of Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). , 2013, Biological research.

[78]  Miguel Olaizola,et al.  Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors , 2000, Journal of Applied Phycology.

[79]  N. Nishio,et al.  Isolation of resistant mutants against carotenoid biosynthesis inhibitors for a green alga Haematococcus pluvialis, and their hybrid formation by protoplast fusion for breeding of higher astaxanthin producers , 1994 .

[80]  Bodi Hui,et al.  Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis , 2003, Biotechnology Letters.

[81]  Jianke Huang,et al.  The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. , 2014, Bioresource technology.

[82]  Ian Morris,et al.  An Introduction To The Algae. , 1971 .

[83]  Makio Kobayashi,et al.  Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress , 1997, Biotechnology Letters.

[84]  Q. Hu,et al.  Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae) , 2009, Journal of Applied Phycology.

[85]  John J. Milledge,et al.  Energy balance and techno-economic assessment of algal biofuel production systems , 2013 .

[86]  Keith D. Bartle,et al.  Supercritical fluid extraction , 2007 .

[87]  Reza Ranjbar,et al.  High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor , 2008 .

[88]  M. Maraschin,et al.  Pigmentation and carotenoid content of shrimp fed with Haematococcus pluvialis and soy lecithin , 2011 .

[89]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[90]  N. Nishio,et al.  Isolation and characterization of compactin resistant mutants of an astaxanthin synthesizing green alga Haematococcus pluvialis , 1997, Biotechnology Letters.

[91]  Production of astaxanthin in Haematococcus pluvialis cultured in various media. , 1999 .

[92]  A. Fry,et al.  Astaxanthin supplementation does not attenuate muscle injury following eccentric exercise in resistance-trained men. , 2005, International journal of sport nutrition and exercise metabolism.

[93]  P. Bubrick Production of astaxanthin from Haematococcus , 1991 .

[94]  T. Emanuelli,et al.  Astaxanthin prevents changes in the activities of thioredoxin reductase and paraoxonase in hypercholesterolemic rabbits , 2012, Journal of clinical biochemistry and nutrition.

[95]  X. Miao,et al.  Biodiesel production from heterotrophic microalgal oil. , 2006, Bioresource technology.

[96]  A. Solovchenko Recent breakthroughs in the biology of astaxanthin accumulation by microalgal cell , 2015, Photosynthesis Research.

[97]  Yun Liu,et al.  Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis , 2014, TheScientificWorldJournal.

[98]  F. Czygan [Blood-rain and blood-snow: nitrogen-deficient cells of haematococcus pluvialis and chlamydomonas nivalis]. , 1970, Archiv fur Mikrobiologie.

[99]  C. Meng,et al.  Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3). , 2013, Indian journal of biochemistry & biophysics.

[100]  E. Barberá,et al.  Growth of Haematococcus lacustris: A Contribution to Kinetic Modelling , 1997 .

[101]  Kinzo Matsumoto,et al.  Astaxanthin, a carotenoid with potential in human health and nutrition. , 2006, Journal of natural products.

[102]  J. Kopecký,et al.  Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage , 2003, Journal of Applied Phycology.

[103]  E. Jin,et al.  Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray , 2006, Planta.

[104]  S. Konosu,et al.  Pigmentation of juvenile coho salmon with carotenoid oil extracted from Antarctic krill , 1987 .

[105]  C. Aflalo,et al.  The Effect of the Herbicide Glufosinate (BASTA) on Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis , 1999 .

[106]  Gokare A. Ravishankar,et al.  Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis , 2015, Journal of Food Science and Technology.

[107]  M. Yamaguchi,et al.  Sports Performance Benefits from Taking Natural Astaxaxxthin * Characterized by Visual Acuity and Muscular Fatigue Improvement in Humans , 2004 .

[108]  Y. Oh,et al.  Breaking dormancy: an energy-efficient means of recovering astaxanthin from microalgae , 2015 .

[109]  Helena M. Amaro,et al.  Microalgae as Sources of Carotenoids , 2011, Marine drugs.

[110]  D. Kang,et al.  Morphological, molecular, and biochemical characterization of astaxanthin-producing green microalga Haematococcus sp. KORDI03 (Haematococcaceae, Chlorophyta) isolated from Korea. , 2015, Journal of microbiology and biotechnology.

[111]  B. Nobre,et al.  Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis , 2006 .

[112]  Raymond R. Tan,et al.  Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis , 2011 .

[113]  T. Sommer,et al.  Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss) , 1991 .

[114]  Shiro Nagai,et al.  Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media , 1991 .

[115]  J. Coombes,et al.  Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease , 2011, Marine drugs.

[116]  E. McHugh,et al.  Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. , 2013, Bioresource technology.

[117]  O. Torrissen,et al.  Pigmentation of salmonids — Genetical variation in carotenoid deposition in rainbow trout , 1984 .

[118]  S. Tsuji,et al.  Effects of astaxanthin-rich Haematococcus pluvialis extract on cognitive function: a randomised, double-blind, placebo-controlled study , 2012, Journal of clinical biochemistry and nutrition.

[119]  A. Solovchenko,et al.  Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia) , 2014, Marine drugs.

[120]  A. Zarka,et al.  INHIBITION OF ASTAXANTHIN SYNTHESIS UNDER HIGH IRRADIANCE DOES NOT ABOLISH TRIACYLGLYCEROL ACCUMULATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) 1 , 2005 .

[121]  A. M. Elliott Morphology ana life history of Haematococcus pluvialis , 1931 .

[122]  Q. Hu,et al.  Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation , 2013 .

[123]  P. Palozza,et al.  Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. , 2009, Cancer letters.

[124]  Wahyudiono,et al.  Wet Extraction of Lipids and Astaxanthin from Haematococcus pluvialis by Liquefied Dimethyl Ether , 2016 .

[125]  Y. Obara,et al.  Effects of astaxanthin on antioxidation in human aqueous humor , 2013, Journal of clinical biochemistry and nutrition.

[126]  Drew Seils,et al.  Optimal design , 2007 .

[127]  A. Otero,et al.  Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. , 2001, Journal of biotechnology.

[128]  S. Cakli,et al.  Determination of astaxanthin and canthaxanthin in salmonid , 2005 .

[129]  B. Wang,et al.  ASTAXANTHIN ACCUMULATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) AS AN ACTIVE PHOTOPROTECTIVE PROCESS UNDER HIGH IRRADIANCE 1 , 2003 .

[130]  Lingling Chen,et al.  Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. , 2012, Enzyme and microbial technology.

[131]  J. S. Lee,et al.  Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis , 2005, Applied Microbiology and Biotechnology.

[132]  Kumi Tominaga,et al.  Cosmetic benefits of astaxanthin on humans subjects. , 2012, Acta biochimica Polonica.

[133]  T. Koyama,et al.  Effects of Astaxanthin in Obese Mice Fed a High-Fat Diet , 2007, Bioscience, biotechnology, and biochemistry.

[134]  H. Tayefi-Nasrabadi,et al.  Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rainbow trout (Oncorhynchus mykiss) , 2011, Fish Physiology and Biochemistry.

[135]  F. Czygan Blutregen und Blutschnee: Stickstoffmangel-Zellen von Haematococcus pluvialis und Chlamydomonas nivalis , 1970, Archiv für Mikrobiologie.

[136]  S. Liaaen-Jensen,et al.  Optical purity of (3S,3'S)-astaxanthin from Haematococcus pluvialis , 1981 .

[137]  J. Gimpel,et al.  CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES) 1 , 2012, Journal of phycology.

[138]  E. Ibáñez,et al.  Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol , 2014 .

[139]  Yeguang Li,et al.  Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process , 2009 .

[140]  Accumulation of astaxanthin in flagellated cells of Haematococcus pluvialis – cultural and regulatory aspects , 2004 .

[141]  K. Masuda,et al.  Effect of Astaxanthin on Accommodation and Asthenopia , 2011 .

[142]  F. G. Acién,et al.  Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. , 2005, Biotechnology and bioengineering.

[143]  Hartmut K. Lichtenthaler,et al.  THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY OF ISOPRENOID BIOSYNTHESIS IN PLANTS. , 1999, Annual review of plant physiology and plant molecular biology.

[144]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[145]  R. Sano Coelho,et al.  Biodiesel production from heterotrophic microalgae , 2017 .

[146]  Y. Naguib Antioxidant activities of astaxanthin and related carotenoids. , 2000, Journal of agricultural and food chemistry.

[147]  T. Lotan,et al.  Cloning and expression inEscherichia coli of the gene encoding β‐C‐4‐oxygenase, that converts β‐carotene to the ketocarotenoid canthaxanthin inHaematococcus pluvialis , 1995, FEBS letters.

[148]  Ji-Young Lee,et al.  Astaxanthin Structure , Metabolism , and Health Benefits , 2014 .

[149]  Ying Liu,et al.  Induction of lipids and resultant FAME profiles of microalgae from coastal waters of Pearl River Delta. , 2013, Bioresource technology.

[150]  V. W. Proctor SOME CONTROLLING FACTORS IN THE DISTRIBUTION OF HAEMATOCOCCUS PLUVIALIS , 1957 .

[151]  A. Young,et al.  Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis , 1996 .

[152]  S. Sim,et al.  Astaxanthin production by a highly photosensitive Haematococcus mutant , 2012 .

[153]  Q. Hu,et al.  Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae) , 2009, Planta.

[154]  Patrick Maillard,et al.  Gametogenesis in Haematococcus pluvialis Flotow (Volvocales, Chlorophyta) , 1997 .

[155]  C. Thiemermann,et al.  Effects of inhibitors of the activity of cyclo‐oxygenase‐2 on the hypotension and multiple organ dysfunction caused by endotoxin: A comparison with dexamethasone , 1998, British journal of pharmacology.

[156]  C. Hagen,et al.  Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation , 2002 .

[157]  H. Ohigashi,et al.  Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis , 1997, Plant Growth Regulation.

[158]  W. Eisenreich,et al.  Deoxyxylulose phosphate pathway to terpenoids. , 2001, Trends in plant science.

[159]  T. Nadamoto,et al.  Effects of astaxanthin and vitamin C on the prevention of gastric ulcerations in stressed rats. , 2005, Journal of nutritional science and vitaminology.

[160]  Ying Liu,et al.  Screening, Growth Medium Optimisation and Heterotrophic Cultivation of Microalgae for Biodiesel Production , 2014, Applied Biochemistry and Biotechnology.

[161]  Lei Chen,et al.  Metabolomic and network analysis of astaxanthin-producing Haematococcus pluvialis under various stress conditions. , 2014, Bioresource technology.

[162]  F. G. Fernández,et al.  Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. , 2006, Journal of biotechnology.

[163]  K. Kondo,et al.  Inhibition of low-density lipoprotein oxidation by astaxanthin. , 2000, Journal of atherosclerosis and thrombosis.

[164]  Andrew J. Young,et al.  Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor , 1996 .

[165]  G. Choubert,et al.  Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin , 1993 .

[166]  B. Chew,et al.  Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans , 2010, Nutrition & metabolism.

[167]  Iwasaki Tsuneto,et al.  Effects of Astaxanthin on Eyestrain Induced by Accommodative Dysfunction , 2006 .

[168]  Gokare A. Ravishankar,et al.  Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. , 2008, Journal of experimental botany.

[169]  J. Steinbrenner,et al.  Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. , 2001, Plant physiology.

[170]  Miguel Olaizola,et al.  Haematococcus astaxanthin: applications for human health and nutrition. , 2003, Trends in biotechnology.

[171]  F. Chen,et al.  Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). , 2015, The Plant journal : for cell and molecular biology.

[172]  B. Mathison,et al.  Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice. , 2010, Anticancer research.

[173]  S. Aradhya,et al.  Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts , 2010 .

[174]  Y. Yun,et al.  Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. , 2011, Bioresource technology.

[175]  s a 0 e 0 A Technical Review of Haematococcus Algae , 2022 .

[176]  Lei Chen,et al.  Chemicals to enhance microalgal growth and accumulation of high-value bioproducts , 2015, Front. Microbiol..

[177]  K. Mai,et al.  Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea , 2014 .

[178]  F. Comhaire,et al.  Combined conventional/antioxidant "Astaxanthin" treatment for male infertility: a double blind, randomized trial. , 2005, Asian journal of andrology.

[179]  F. G. Acién,et al.  Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. , 2008, Biotechnology and bioengineering.

[180]  Gokare A. Ravishankar,et al.  Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review , 2014, Marine drugs.

[181]  Robert H. Brown,et al.  Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis , 1997, Journal of neurochemistry.

[182]  G. Alvisi,et al.  Astaxanthin Improves Human Sperm Capacitation by Inducing Lyn Displacement and Activation , 2015, Marine drugs.

[183]  Kai Yin,et al.  Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. , 2011, Molecular nutrition & food research.

[184]  Q. Hu,et al.  Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae) , 2008 .

[185]  A. Hirata,et al.  Three-Dimensional Ultrastructural Study of Oil and Astaxanthin Accumulation during Encystment in the Green Alga Haematococcus pluvialis , 2013, PloS one.

[186]  Miguel Olaizola,et al.  Commercial development of microalgal biotechnology: from the test tube to the marketplace. , 2003, Biomolecular engineering.

[187]  T. Motomura,et al.  Cold-tolerant strain of Haematococcus pluvialis (Haematococcaceae, Chlorophyta) from Blomstrandhalvøya (Svalbard) , 2013 .

[188]  Hong-Ying Hu,et al.  Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent , 2013 .

[189]  W. Eisenreich,et al.  Studies on the nonmevalonate terpene biosynthetic pathway: Metabolic role of IspH (LytB) protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[190]  Enhanced biofuel production using optimality, pathway modification and waste minimization , 2015, Journal of Applied Phycology.

[191]  Julian N. Rosenberg,et al.  A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. , 2008, Current opinion in biotechnology.

[192]  Mari Sanada,et al.  Effects of astaxanthin on accommodation, critical flicker fusion, and pattern visual evoked potential in visual display terminal workers , 2002 .

[193]  F. Peebles The life-history of Sphaerella lacustris (Haematococcus pluvialis), with especial reference to the nature and behaviour of the zoospores , 1909 .

[194]  A. Lababpour,et al.  Fed-batch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. , 2005, Journal of bioscience and bioengineering.

[195]  F. G. Acién,et al.  Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content , 2007, Applied Microbiology and Biotechnology.

[196]  Norihiko Hata,et al.  Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture , 2001, Journal of Applied Phycology.

[197]  L. Kupčinskas,et al.  Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin. , 2007, FEMS immunology and medical microbiology.

[198]  A. Otero,et al.  Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis , 2000, Applied Microbiology and Biotechnology.

[199]  E. Pringsheim NUTRITIONAL REQUIREMENTS OF HAEMATOCOCCUS PLUVIALIS AND RELATED SPECIES 1 , 1966, Journal of phycology.

[200]  C. Popovich,et al.  Lipid analysis in Haematococcuspluvialis to assess its potential use as a biodiesel feedstock. , 2010, Bioresource technology.

[201]  A. Young,et al.  Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability , 2001, Journal of Applied Phycology.

[202]  E. Gantt,et al.  Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular chlorophyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[203]  K. Fujii Process integration of supercritical carbon dioxide extraction and acid treatment for astaxanthin extraction from a vegetative microalga , 2012 .

[204]  B. Yan,et al.  Supercritical fluid extraction of astaxanthin from Haematococcus pluvialis and its antioxidant potential in sunflower oil , 2012 .

[205]  S. Sim,et al.  Direct extraction of astaxanthin from Haematococcus culture using vegetable oils , 2008, Biotechnology Letters.

[206]  D. M. Harrison The biosynthesis of carotenoids. , 1986, Natural product reports.

[207]  A. R. Dominguez-Bocanegra,et al.  Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. , 2004, Bioresource technology.

[208]  Jian Li,et al.  An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. , 2011, Biotechnology advances.

[209]  J. Abalde,et al.  Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. , 2005, Bioresource technology.

[210]  J. Barber,et al.  Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis: Effects of Cultivation Parameters , 2007 .

[211]  Tang-Bin Zou,et al.  Response Surface Methodology for Ultrasound-Assisted Extraction of Astaxanthin from Haematococcus pluvialis , 2013, Marine drugs.

[212]  S. Sim,et al.  Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation , 2014, Bioprocess and Biosystems Engineering.

[213]  A. Zarka,et al.  ACCUMULATION OF OLEIC ACID IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) UNDER NITROGEN STARVATION OR HIGH LIGHT IS CORRELATED WITH THAT OF ASTAXANTHIN ESTERS1 , 2002 .

[214]  Y. Koga,et al.  Preliminary Clinical Evaluation of Toxicity and Efficacy of A New Astaxanthin-rich Haematococcus pluvialis Extract , 2009, Journal of clinical biochemistry and nutrition.

[215]  Gokare A. Ravishankar,et al.  Studies on Haematococcus pluvialis for improved production of astaxanthin by mutagenesis , 2001 .

[216]  Feng Chen,et al.  Changes in pigments profile in the green alga Haeamtococcus pluvialis exposed to environmental stresses , 1999, Biotechnology Letters.

[217]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.