On a differential equation approach to the weighted orthogonal Procrustes problem
暂无分享,去创建一个
[1] S. Mulaik,et al. Foundations of Factor Analysis , 1975 .
[2] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[3] Philip E. Gill,et al. Practical optimization , 1981 .
[4] N. Trendafilov,et al. Iterative Majorizing Rotation to Orthogonal Simple Structure Solution. , 1996, Multivariate behavioral research.
[5] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[6] Kenneth R. Driessel,et al. The projected gradient methods for least squares matrix approximations with spectral constraints , 1990 .
[7] Richard Bellman,et al. Introduction to Matrix Analysis , 1972 .
[8] J. Gower. Multivariate analysis : Ordination, multidimensional scaling and allied topics , 1984 .
[9] J. Berge,et al. Orthogonal procrustes rotation for two or more matrices , 1977 .
[10] Richard Bellman,et al. Introduction to matrix analysis (2nd ed.) , 1997 .
[11] C. W. Gear,et al. Maintianing solution invariants in the numerical solution of ODEs , 1986 .
[12] M. Hirsch,et al. Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .
[13] Ab Mooijaart,et al. A general solution of the weighted orthonormal procrustes problem , 1990 .
[14] Dirk L. Knol,et al. Orthogonal rotations to maximal agreement for two or more matrices of different column orders , 1984 .
[15] Gene H. Golub,et al. Matrix computations , 1983 .
[16] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[17] Deborah F. Swayne,et al. A weighted procrustes criterion , 1991 .