TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP.

[1]  J. Sýkora,et al.  FLIM studies of 22- and 25-NBD-cholesterol in living HEK293 cells: plasma membrane change induced by cholesterol depletion. , 2013, Chemistry and physics of lipids.

[2]  J. Sýkora,et al.  Fluorescence spectroscopy studies of HEK293 cells expressing DOR-Gi1α fusion protein; the effect of cholesterol depletion. , 2011, Biochimica et biophysica acta.

[3]  D. Lukas,et al.  Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds. , 2011, Acta biomaterialia.

[4]  Akihiro Kusumi,et al.  Hierarchical mesoscale domain organization of the plasma membrane. , 2011, Trends in biochemical sciences.

[5]  Molly J. Rossow,et al.  Raster image correlation spectroscopy in live cells , 2010, Nature Protocols.

[6]  Enrico Gratton,et al.  Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[7]  M. Parenti,et al.  G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. , 2009, Journal of molecular endocrinology.

[8]  Enrico Gratton,et al.  Analysis of diffusion and binding in cells using the RICS approach , 2009, Microscopy research and technique.

[9]  J. Sýkora,et al.  The effect of detergents on trimeric G-protein activity in isolated plasma membranes from rat brain cortex: correlation with studies of DPH and Laurdan fluorescence. , 2009, Biochimica et biophysica acta.

[10]  J. Novotný,et al.  Ca2+ responses to thyrotropin‐releasing hormone and angiotensin II: the role of plasma membrane integrity and effect of G11α protein overexpression on homologous and heterologous desensitization , 2008, Cell biochemistry and function.

[11]  Elina Ikonen,et al.  Cellular cholesterol trafficking and compartmentalization , 2008, Nature Reviews Molecular Cell Biology.

[12]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[13]  D. Richter,et al.  Localization of the Mouse 5-Hydroxytryptamine1A Receptor in Lipid Microdomains Depends on Its Palmitoylation and Is Involved in Receptor-Mediated Signaling , 2007, Molecular Pharmacology.

[14]  A. Chattopadhyay,et al.  Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells. , 2007, Biochimica et biophysica acta.

[15]  W. Xu,et al.  Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. , 2007, Biochemical pharmacology.

[16]  Mark M. Rasenick,et al.  Lipid raft microdomains and neurotransmitter signalling , 2007, Nature Reviews Neuroscience.

[17]  J. Novotný,et al.  Disruption of the Plasma Membrane Integrity by Cholesterol Depletion Impairs Effectiveness of TRH Receptor-Mediated Signal Transduction via Gq/G11α Proteins , 2007, Journal of receptor and signal transduction research.

[18]  J. Novotný,et al.  Functional interactions between the α1b-adrenoceptor and Gα11 are compromised by de-palmitoylation of the G protein but not of the receptor , 2006 .

[19]  P. Chong,et al.  Localization of the κ Opioid Receptor in Lipid Rafts , 2006, Journal of Pharmacology and Experimental Therapeutics.

[20]  Annick Thomas,et al.  Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. , 2006, Biochemistry.

[21]  B. Hecht,et al.  Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  J. Novotný,et al.  Dominant portion of thyrotropin-releasing hormone receptor is excluded from lipid domains. Detergent-resistant and detergent-sensitive pools of TRH receptor and Gqalpha/G11alpha protein. , 2005, Journal of biochemistry.

[23]  I. Alves,et al.  Ligand modulation of lateral segregation of a G-protein-coupled receptor into lipid microdomains in sphingomyelin/phosphatidylcholine solid-supported bilayers. , 2005, Biochemistry.

[24]  Akihiro Kusumi,et al.  Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. , 2005, Biophysical journal.

[25]  S. Kunapuli,et al.  Lipid rafts are required in Gαi signaling downstream of the P2Y12 receptor during ADP‐mediated platelet activation , 2005, Journal of thrombosis and haemostasis : JTH.

[26]  A. Finazzi-Agro’,et al.  Lipid Rafts Control Signaling of Type-1 Cannabinoid Receptors in Neuronal Cells , 2005, Journal of Biological Chemistry.

[27]  R. Epand,et al.  Caveolin scaffolding region and cholesterol-rich domains in membranes. , 2005, Journal of molecular biology.

[28]  A. Chattopadhyay,et al.  Membrane organization of the human serotonin1A receptor monitored by detergent insolubility using GFP fluorescence , 2005, Molecular membrane biology.

[29]  Ole G Mouritsen,et al.  Lipids do influence protein function-the hydrophobic matching hypothesis revisited. , 2004, Biochimica et biophysica acta.

[30]  Anthony G Lee,et al.  How lipids affect the activities of integral membrane proteins. , 2004, Biochimica et biophysica acta.

[31]  M. Zuckermann,et al.  What's so special about cholesterol? , 2004, Lipids.

[32]  Julia H. M. White,et al.  Ectopically expressed gamma-aminobutyric acid receptor B is functionally down-regulated in isolated lipid raft-enriched membranes. , 2004, Biochemical and biophysical research communications.

[33]  P. Insel,et al.  The evolving role of lipid rafts and caveolae in G protein‐coupled receptor signaling: implications for molecular pharmacology , 2004, British journal of pharmacology.

[34]  Jennifer Lippincott-Schwartz,et al.  Dynamics of putative raft-associated proteins at the cell surface , 2004, The Journal of cell biology.

[35]  Peter Strålfors,et al.  Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes. Cholesterol depletion blocks insulin signalling for metabolic and mitogenic control. , 2004, European journal of biochemistry.

[36]  J. Novotný,et al.  Long-term agonist stimulation of IP prostanoid receptor depletes the cognate G(s)alpha protein in membrane domains but does not change the receptor level. , 2004, Biochimica et biophysica acta.

[37]  M. Parenti,et al.  G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? , 2004, Journal of molecular endocrinology.

[38]  S. Daniel,et al.  Localization and regulation of thyrotropin receptors within lipid rafts. , 2003, Endocrinology.

[39]  S. Steinberg,et al.  Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. , 2003, Molecular pharmacology.

[40]  G. Milligan Principles: extending the utility of [35S]GTP gamma S binding assays. , 2003, Trends in pharmacological sciences.

[41]  L. M. Leeb-Lundberg,et al.  Human B1 and B2 bradykinin receptors and their agonists target caveolae-related lipid rafts to different degrees in HEK293 cells. , 2002, Biochemistry.

[42]  R. A. Kaiser,et al.  Functional Compartmentation of Endothelial P2Y Receptor Signaling , 2002, Circulation research.

[43]  Frederick R Maxfield,et al.  Plasma membrane microdomains. , 2002, Current opinion in cell biology.

[44]  D. Bachvarov,et al.  Agonist-induced translocation of the kinin B(1) receptor to caveolae-related rafts. , 2002, Molecular pharmacology.

[45]  P. L. Becker,et al.  Cholesterol Depletion Inhibits Epidermal Growth Factor Receptor Transactivation by Angiotensin II in Vascular Smooth Muscle Cells , 2001, The Journal of Biological Chemistry.

[46]  J. Lippincott-Schwartz,et al.  Studying protein dynamics in living cells , 2001, Nature Reviews Molecular Cell Biology.

[47]  P. Oh,et al.  Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. , 2001, Molecular biology of the cell.

[48]  M. Lisanti,et al.  Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. , 2000, The Journal of biological chemistry.

[49]  E. Ikonen,et al.  How cells handle cholesterol. , 2000, Science.

[50]  D. Brown,et al.  Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). , 2000, Biochimica et biophysica acta.

[51]  Z. Salamon,et al.  Plasmon resonance studies of agonist/antagonist binding to the human delta-opioid receptor: new structural insights into receptor-ligand interactions. , 2000, Biophysical journal.

[52]  T. Michel,et al.  Agonist-modulated Targeting of the EDG-1 Receptor to Plasmalemmal Caveolae , 2000, The Journal of Biological Chemistry.

[53]  G. Makhlouf,et al.  Heterologous Desensitization Mediated by G Protein-specific Binding to Caveolin* , 2000, The Journal of Biological Chemistry.

[54]  J. Balligand,et al.  Dynamin mediates caveolar sequestration of muscarinic cholinergic receptors and alteration in NO signaling , 2000, The EMBO journal.

[55]  P A Insel,et al.  Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). , 2000, The Journal of pharmacology and experimental therapeutics.

[56]  P. Narayan,et al.  Activated Cardiac Adenosine A1 Receptors Translocate Out of Caveolae* , 2000, The Journal of Biological Chemistry.

[57]  J. Novotný,et al.  Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and gqalpha /G11alpha induced by agonist stimulation. , 1999, The Biochemical journal.

[58]  J Malvey,et al.  Characterization of an Intrinsically Fluorescent Gonadotropin-Releasing Hormone Receptor and Effects of Ligand Binding on Receptor Lateral Diffusion* , 1999 .

[59]  G. Milligan,et al.  Real Time Visualization of Agonist-mediated Redistribution and Internalization of a Green Fluorescent Protein-tagged Form of the Thyrotropin-releasing Hormone Receptor* , 1998, The Journal of Biological Chemistry.

[60]  B. Kobilka,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[61]  Howard J. Worman,et al.  Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis , 1997, The Journal of cell biology.

[62]  O. Féron,et al.  Dynamic Targeting of the Agonist-stimulated m2 Muscarinic Acetylcholine Receptor to Caveolae in Cardiac Myocytes* , 1997, The Journal of Biological Chemistry.

[63]  L. M. Leeb-Lundberg,et al.  Bradykinin Sequesters B2 Bradykinin Receptors and the Receptor-coupled Gα Subunits Gαq and Gαiin Caveolae in DDT1 MF-2 Smooth Muscle Cells* , 1997, The Journal of Biological Chemistry.

[64]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[65]  M. Caron,et al.  Internal trafficking and surface mobility of a functionally intact beta2-adrenergic receptor-green fluorescent protein conjugate. , 1997, Molecular pharmacology.

[66]  A Kusumi,et al.  Cell surface organization by the membrane skeleton. , 1996, Current opinion in cell biology.

[67]  G. Raposo,et al.  Are β-ARs internalized via caveolae or coated pits? , 1994 .

[68]  N. Thompson,et al.  Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery. , 1990, Biophysical journal.

[69]  A. Strosberg,et al.  Internalization of beta-adrenergic receptor in A431 cells involves non-coated vesicles. , 1989, European journal of cell biology.

[70]  D. Axelrod,et al.  Polarized fluorescence photobleaching recovery for measuring rotational diffusion in solutions and membranes. , 1988, Biophysical journal.

[71]  M. Poo,et al.  Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  K. Kinosita,et al.  On the wobbling-in-cone analysis of fluorescence anisotropy decay. , 1982, Biophysical journal.

[73]  M. Poo Rapid lateral diffusion of functional ACh receptors in embryonic muscle cell membrane , 1982, Nature.

[74]  E. Neufeld,et al.  Mobility, clustering, and transport of nerve growth factor in embryonal sensory cells and in a sympathetic neuronal cell line. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Y. Barenholz,et al.  Fluidity parameters of lipid regions determined by fluorescence polarization. , 1978, Biochimica et biophysica acta.

[76]  K. Kinosita,et al.  Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. , 1977, Biochemistry.

[77]  W. Webb,et al.  Lateral motion of fluorescently labeled acetylcholine receptors in membranes of developing muscle fibers. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[78]  W. Webb,et al.  Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. , 1976, Biophysical journal.

[79]  Y. Barenholz,et al.  Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. , 1974, The Journal of biological chemistry.

[80]  A. Tashjian,et al.  Receptors for thyrotropin-releasing hormone in prolactin producing rat pituitary cells in culture. , 1973, The Journal of biological chemistry.

[81]  M. Neil,et al.  Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. , 2005, Biophysical journal.

[82]  K. Jacobson,et al.  Detecting microdomains in intact cell membranes. , 2005, Annual review of physical chemistry.

[83]  Tom Misteli,et al.  Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. , 2004, Methods in enzymology.

[84]  M. Lisanti,et al.  Purification of caveolae-derived membrane microdomains containing lipid-anchored signaling molecules, such as GPI-anchored proteins, H-Ras, Src-family tyrosine kinases, eNOS, and G-protein alpha-, beta-, and gamma-subunits. , 1999, Methods in molecular biology.

[85]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[86]  R. Brown,et al.  Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. , 1998, Journal of cell science.

[87]  R. G. Anderson The caveolae membrane system. , 1998, Annual review of biochemistry.

[88]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[89]  D. Soumpasis Theoretical analysis of fluorescence photobleaching recovery experiments. , 1983, Biophysical journal.

[90]  S J Singer,et al.  Membrane fluidity and cellular functions. , 1975, Advances in experimental medicine and biology.