Impulsive control of a new chaotic system

Based on the new comparison theorem of impulsive system, this paper derives some sufficient conditions for the stabilization and synchronization of a new chaotic system via impulsive control with varying impulsive intervals. the new chaotic system is a three-dimensional continuous autonomous chaotic system, which can display complex two- and four-scroll attractors in simulations.

[1]  Changyun Wen,et al.  Impulsive control for the stabilization and synchronization of Lorenz systems , 2000 .

[2]  Jinhu Lu,et al.  Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .

[3]  Olusola Akinyele Cone valued Lyapunov functions and stability of impulsive control systems , 2000 .

[4]  Jitao Sun,et al.  Impulsive control of a nuclear spin generator , 2003 .

[5]  D. Baĭnov,et al.  Systems with impulse effect : stability, theory, and applications , 1989 .

[6]  Leon O. Chua,et al.  Experimental Results of Impulsive Synchronization Between Two Chua's Circuits , 1998 .

[7]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[8]  Qidi Wu,et al.  Less conservative conditions for asymptotic stability of impulsive control systems , 2003, IEEE Trans. Autom. Control..

[9]  Parlitz,et al.  Driving and synchronizing by chaotic impulses. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  Guanrong Chen,et al.  A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.

[11]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[12]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .

[13]  Guanrong Chen,et al.  Dynamical Analysis of a New Chaotic Attractor , 2002, Int. J. Bifurc. Chaos.

[14]  H. Agiza,et al.  Synchronization of Rossler and Chen chaotic dynamical systems using active control , 2001, Physics Letters A.

[15]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[16]  Leon O. Chua,et al.  EXPERIMENTAL STUDY OF IMPULSIVE SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC CIRCUITS , 1999 .

[17]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[18]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[19]  Zhengguo Li,et al.  Analysis and design of impulsive control systems , 2001, IEEE Trans. Autom. Control..

[20]  A. Samoilenko,et al.  Impulsive differential equations , 1995 .

[21]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[22]  Tao Yang,et al.  Impulsive control , 1999, IEEE Trans. Autom. Control..

[23]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[24]  Guanrong Chen,et al.  Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.

[25]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[26]  Tao Yang,et al.  In: Impulsive control theory , 2001 .

[27]  Kennedy,et al.  Predictive Poincaré control: A control theory for chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Tao Yang,et al.  Impulsive Systems and Control: Theory and Applications , 2001 .

[29]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.