AlN piezoelectric thin films for energy harvesting and acoustic devices

Abstract Aluminum nitride (AlN) thin films are widely investigated due to their unique physical properties and applications in energy harvesting devices, ultrasonic transducers, microelectronics, high-frequency wide band communications, and power semiconductor devices. This article reviews recent studies of AlN structures, focusing on their fabrication and novel applications. Various fabrication techniques used to synthesize AlN films are discussed, along with their growth mechanisms and crystal structure. The physical properties of AlN films are summarized, including their mechanical and electrical properties (in particular the piezoelectric behavior). Finally, the application of AlN thin films in the fields of energy harvesting and acoustic devices is discussed in detail. Furthermore, this review proposes perspectives for future development of AlN thin films.

[1]  Gianluca Piazza,et al.  Very high frequency channel-select MEMS filters based on self-coupled piezoelectric AlN contour-mode resonators , 2010 .

[2]  Albert P. Pisano,et al.  Thermally compensated aluminum nitride Lamb wave resonators for high temperature applications , 2010 .

[3]  K Kirk Shung,et al.  Radiation forces exerted on arbitrarily located sphere by acoustic tweezer. , 2006, The Journal of the Acoustical Society of America.

[4]  S. Dong,et al.  Characterisation of aluminium nitride films and surface acoustic wave devices for microfluidic applications , 2014 .

[5]  Navab Singh,et al.  Improving aluminum nitride plasma etch process for MEMS applications , 2013 .

[6]  Lu,et al.  Zinc-blende-wurtzite polytypism in semiconductors. , 1992, Physical review. B, Condensed matter.

[7]  M. Lukacs,et al.  Single element high frequency (<50 MHz) PZT sol gel composite ultrasound transducers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  Nobuaki Kawahara,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[9]  Ziping Cao,et al.  Design and characterization of miniature piezoelectric generators with low resonant frequency , 2012 .

[10]  H. Maciel,et al.  High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness , 2004 .

[11]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[12]  A. Pisano,et al.  Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures , 2013 .

[13]  Chitta Saha,et al.  Modeling and experimental investigation of an AA-sized electromagnetic generator for harvesting energy from human motion , 2008, Smart Materials and Structures.

[14]  Qifa Zhou,et al.  Self-Focused AlScN Film Ultrasound Transducer for Individual Cell Manipulation. , 2017, ACS sensors.

[15]  K. Thonke,et al.  Polarization fields of III-nitrides grown in different crystal orientations , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  Nobuaki Kawahara,et al.  Polarity inversion in aluminum nitride thin films under high sputtering power , 2007 .

[17]  Massimo De Vittorio,et al.  AlN-based flexible piezoelectric skin for energy harvesting from human motion , 2016 .

[18]  Qifa Zhou,et al.  Contactless microparticle control via ultrahigh frequency needle type single beam acoustic tweezers. , 2016, Applied physics letters.

[19]  Simona Petroni,et al.  Tactile multisensing on flexible aluminum nitride. , 2012, The Analyst.

[20]  A. Teshigahara,et al.  Influence of oxygen concentration in sputtering gas on piezoelectric response of aluminum nitride thin films , 2008 .

[21]  E. Wistrela,et al.  ScAlN MEMS Cantilevers for Vibrational Energy Harvesting Purposes , 2017, Journal of Microelectromechanical Systems.

[22]  Yuan Lin,et al.  Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator , 2013, Nano Research.

[23]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. , 2013, ACS nano.

[24]  P. Delobelle,et al.  Modeling and characterization of piezoelectric beams based on an aluminum nitride thin‐film layer , 2016 .

[25]  D. Mandal,et al.  The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. , 2015, Physical chemistry chemical physics : PCCP.

[26]  A. Erturk,et al.  Nanoscale flexoelectric energy harvesting , 2014 .

[27]  Neil M. White,et al.  An electromagnetic, vibration-powered generator for intelligent sensor systems , 2004 .

[28]  G. Piazza,et al.  Synthesis and characterization of 10 nm thick piezoelectric AlN films with high c-axis orientation for miniaturized nanoelectromechanical devices , 2014 .

[29]  Siyuan Zhang,et al.  Piezoelectric coefficients and spontaneous polarization of ScAlN , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  Zhong Lin Wang,et al.  Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator , 2015 .

[31]  Ventsislav Yantchev,et al.  Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications , 2011 .

[32]  A. Mathewson,et al.  Fabrication, Simulation and Characterisation of MEMS Piezoelectric Vibration Energy Harvester for Low Frequency☆ , 2015 .

[33]  Jin-Seok Park,et al.  Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs , 2003 .

[34]  Ewa M. Goldys,et al.  Shear piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[35]  D. Zhuang,et al.  Wet etching of GaN, AlN, and SiC : a review , 2005 .

[36]  Duy Son Nguyen,et al.  Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide- and Narrowband Excitation , 2010, Journal of Microelectromechanical Systems.

[37]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[38]  Kazuhiro Nonaka,et al.  Local epitaxial growth of aluminum nitride and molybdenum thin films in fiber texture using aluminum nitride interlayer , 2006 .

[39]  J. Harris,et al.  On the nature of the oxygen-related defect in aluminum nitride , 1990 .

[40]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[41]  A. Kingon,et al.  Piezoresponse force microscopy for piezoelectric measurements of III-nitride materials , 2002 .

[42]  S. Paschen,et al.  Thermal conductivity and mechanical properties of AlN-based thin films , 2016 .

[43]  T. Omori,et al.  Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Jie Yan,et al.  Near-field-magnetic-tweezer manipulation of single DNA molecules. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[46]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[47]  Ulrich Schmid,et al.  Design, fabrication and testing of a piezoelectric energy microgenerator , 2014 .

[48]  Hironao Okada,et al.  Simulation of an ultralow-power power management circuit for MEMS cantilever piezoelectric vibration energy harvesters , 2016 .

[49]  Chang Kyu Jeong,et al.  Highly‐Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates , 2014, Advanced materials.

[50]  Gwiy-Sang Chung,et al.  Fabrication and characterization of vibration-driven AlN piezoelectric micropower generator compatible with complementary metal-oxide semiconductor process , 2015 .

[51]  J. Brault,et al.  Dislocation densities reduction in MBE-grown AlN thin films by high-temperature annealing , 2017 .

[52]  S. Trolier-McKinstry,et al.  Thin Film Piezoelectrics for MEMS , 2004 .

[53]  Milos Nesladek,et al.  Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering , 2004 .

[54]  Arnab Bhattacharya,et al.  ICP-RIE etching of polar, semi-polar and non-polar AlN: comparison of Cl2/Ar and Cl2/BCl3/Ar plasma chemistry and surface pretreatment , 2014 .

[55]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[56]  Sebastien Hentz,et al.  Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films , 2009 .

[57]  Meng Zhang,et al.  A review:aluminum nitride MEMS contour-mode resonator , 2016 .

[58]  Jianliang Lin,et al.  C-axis orientated AlN films deposited using deep oscillation magnetron sputtering , 2017 .

[59]  G. Suchaneck,et al.  Magnetron sputtering of piezoelectric AlN and AlScN thin films and their use in energy harvesting applications , 2016 .

[60]  Gianluca Piazza,et al.  Piezoelectric aluminum nitride thin films for microelectromechanical systems , 2012 .

[61]  Y. Ide,et al.  Control of preferential orientation of AlN films prepared by the reactive sputtering method , 1998 .

[62]  T. Lin,et al.  Berkovich Nanoindentation on AlN Thin Films , 2010, Nanoscale research letters.

[63]  Albert P. Pisano,et al.  Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness , 2011 .

[64]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[65]  Siyuan Zhang,et al.  ScGaN and ScAlN: emerging nitride materials , 2014 .

[66]  Skandar Basrour,et al.  Vibration Energy Harvesting with PZT Micro Device , 2009 .

[67]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[68]  Paul K. Wright,et al.  Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks , 2005 .

[69]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[70]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[71]  Elias Siores,et al.  An investigation of energy harvesting from renewable sources with PVDF and PZT , 2011 .

[72]  Yiannos Manoli,et al.  Fabrication, characterization and modelling of electrostatic micro-generators , 2009 .

[73]  R. Reif,et al.  Measurements of the bulk, C-axis electromechanical coupling constant as a function of AlN film quality , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[74]  Tokihiro Nishihara,et al.  Highly piezoelectric co-doped AlN thin films for bulk acoustic wave resonators , 2013, 2013 IEEE International Ultrasonics Symposium (IUS).

[75]  J. Voldman Electrical forces for microscale cell manipulation. , 2006, Annual review of biomedical engineering.

[76]  Nobuaki Kawahara,et al.  Influence of sputtering pressure on polarity distribution of aluminum nitride thin films , 2006 .

[77]  Peter Hing,et al.  Microstructure evolution of AlN films deposited under various pressures by RF reactive sputtering , 2003 .

[78]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[79]  Y. Morilla,et al.  Comparative study of c-axis AlN films sputtered on metallic surfaces , 2005 .

[80]  Lifeng Qin,et al.  Simulation study of MEMS piezoelectric vibration energy harvester based on c-axis tilted AlN thin film for performance improvement , 2016 .

[81]  Changyang Lee,et al.  Single beam acoustic trapping. , 2009, Applied physics letters.

[82]  S. H. Kim,et al.  Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting , 2009 .

[83]  Y. V. Andel,et al.  Vibration energy harvesting with aluminum nitride-based piezoelectric devices , 2009 .

[84]  Eric Sven Hellman,et al.  The Polarity of GaN: a Critical Review , 1998 .

[85]  H. M. Liaw,et al.  The characterization of sputtered polycrystalline aluminum nitride on silicon by surface acoustic wave measurements , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[86]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[87]  J. Bjurstrom,et al.  Synthesis of c-axis-oriented AlN thin films on high-conducting layers: Al, Mo, Ti, TiN, and Ni , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[88]  Daigo Miki,et al.  A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications , 2010 .

[89]  Enrico Verona,et al.  Gigahertz-range electro-acoustic devices based on pseudo- surface-acoustic waves in AlN/diamond/Si structures , 2005 .

[90]  T. Yanagitani,et al.  Significant shear mode softening in a c-axis tilt nanostructured hexagonal thin film induced by a self-shadowing effect , 2013 .

[91]  Optimal orientations of LiTaO3 for application in plate mode resonators , 2015 .

[92]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[93]  Wenliang Wang,et al.  Interfacial reaction control and its mechanism of AlN epitaxial films grown on Si(111) substrates by pulsed laser deposition , 2015, Scientific Reports.

[94]  Hiroki Kuwano,et al.  Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence] , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[95]  Osamu Fukuda,et al.  Preparation of Oriented Aluminum Nitride Thin Films on Polyimide Films and Piezoelectric Response with High Thermal Stability and Flexibility , 2007 .

[96]  Leslie Y Yeo,et al.  Microparticle collection and concentration via a miniature surface acoustic wave device. , 2007, Lab on a chip.

[97]  J. Olivares,et al.  Circuital Model for the Analysis of the Piezoelectric Response of AlN Films Using SAW Filters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[98]  H. Hida,et al.  Lead-Free Piezoelectric MEMS Energy Harvesters of (K,Na)NbO3 Thin Films on Stainless Steel Cantilevers , 2013 .

[99]  O. Elmazria,et al.  AlN/IDT/AlN/Sapphire SAW Heterostructure for High-Temperature Applications , 2016, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[100]  M. Aguilar,et al.  Influence of sputtering mechanisms on the preferred orientation of aluminum nitride thin films , 2003 .

[101]  A. Cannavale,et al.  Flexible AlN flags for efficient wind energy harvesting at ultralow cut-in wind speed , 2015 .

[102]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[103]  Sang‐Woo Kim,et al.  Energy harvesting based on semiconducting piezoelectric ZnO nanostructures , 2012 .

[104]  H. Oguchi,et al.  High output power AlN vibration-driven energy harvesters , 2013 .

[105]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[106]  T. Tavşanoğlu Synthesis of c-axis oriented AlN thin films at room temperature , 2017 .

[107]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[108]  J. Friend,et al.  Fast Inertial Microfluidic Actuation and Manipulation Using Surface Acoustic Waves , 2010 .

[109]  Xingqiang Zhao,et al.  The Fabrication of Piezoelectric Vibration Energy Harvester Arrays Based on AlN Thin Film , 2013 .

[110]  Alperen Toprak,et al.  Piezoelectric energy harvesting: State-of-the-art and challenges , 2014 .

[111]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[112]  J. Myoung,et al.  Impact of post-deposition annealing on surface, bulk and interface properties of RF sputtered AlN films , 2009 .

[113]  M. Cho,et al.  Control of crystal polarity in oxide and nitride semiconductors by interface engineering , 2006 .

[114]  Gunilla Wingqvist,et al.  AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications — A review , 2010 .

[115]  Zhong Lin Wang,et al.  Direct-Current Nanogenerator Driven by Ultrasonic Waves , 2007, Science.

[116]  Wanli Zhang,et al.  High temperature characteristics of AlN film SAW sensor integrated with TC4 alloy substrate , 2016 .

[117]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[118]  S. Dong,et al.  Discrete microfluidics based on aluminum nitride surface acoustic wave devices , 2015 .

[119]  Xiao-Hong Xu,et al.  Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering , 2001 .

[120]  Ke Xu,et al.  Nucleation and growth of (10¯11) semi-polar AlN on (0001) AlN by Hydride Vapor Phase Epitaxy , 2016, Scientific Reports.

[121]  Jan M. Rabaey,et al.  A study of low level vibrations as a power source for wireless sensor nodes , 2003, Comput. Commun..

[122]  G. Wingqvist,et al.  Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1-x)N alloys. , 2010, Physical review letters.

[123]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[124]  Enrique Iborra,et al.  Effect of rapid thermal annealing on the crystal quality and the piezoelectric response of polycrystalline AlN films , 2006 .

[125]  James Friend,et al.  Interfacial destabilization and atomization driven by surface acoustic waves , 2008 .

[126]  H. Lüth,et al.  Nanoscale imaging of surface piezoresponse on GaN epitaxial layers , 2007 .

[127]  Chi Zhang,et al.  High power triboelectric nanogenerator based on printed circuit board (PCB) technology , 2015, Nano Research.

[128]  Achim Wixforth,et al.  Acoustically driven planar microfluidics , 2003 .

[129]  Bin Li,et al.  Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator , 2013 .

[130]  A. Mathewson,et al.  Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices , 2014 .

[131]  S. Scorcioni,et al.  AlN-based MEMS devices for vibrational energy harvesting applications , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[132]  M. Akiyama,et al.  Influence of scandium concentration on power generation figure of merit of scandium aluminum nitride thin films , 2013 .

[133]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[134]  Leslie Y Yeo,et al.  Interfacial jetting phenomena induced by focused surface vibrations. , 2009, Physical review letters.

[135]  S. Muensit,et al.  Extensional piezoelectric coefficients of gallium nitride and aluminum nitride , 1999 .

[136]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[137]  Qifa Zhou,et al.  Multilayered carbon nanotube yarn based optoacoustic transducer with high energy conversion efficiency for ultrasound application , 2018 .

[138]  Nathan Jackson,et al.  Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance , 2013 .

[139]  P. Kirsch,et al.  Very high frequency SAW devices based on nanocrystalline diamond and aluminum nitride layered structure achieved using e-beam lithography , 2008 .

[140]  Y. Naruse,et al.  Electrostatic micro power generation from low-frequency vibration such as human motion , 2009 .

[141]  F. Bernardini,et al.  First-principles calculation of the piezoelectric tensor d⇊ of III–V nitrides , 2002 .

[142]  H. L. Kao,et al.  The Study of Preferred Orientation Growth of Aluminum Nitride Thin Films on Ceramic and Glass Substrates , 1999 .

[143]  Leslie Y Yeo,et al.  Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. , 2008, Physical review letters.

[144]  Ulrich Schmid,et al.  Simulation and laser vibrometry characterization of piezoelectric AlN thin films , 2008 .

[145]  K. Lai,et al.  High-quality AlN grown with a single substrate temperature below 1200 °C , 2017, Scientific Reports.

[146]  J. S. Park,et al.  Control of Polarity and Application to Devices , 2009 .

[147]  T. Itoh,et al.  High-efficiency MOSFET bridge rectifier for AlN MEMS cantilever vibration energy harvester , 2017 .

[148]  H. Barshilia,et al.  Growth and characterization of aluminum nitride coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering , 2008 .

[149]  V. Pop,et al.  Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system , 2010 .

[150]  H. Wikle,et al.  The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting , 2008 .

[151]  Zhenguo Yang,et al.  Oriented nanostructures for energy conversion and storage. , 2008, ChemSusChem.

[152]  Judith A. Ruffner,et al.  Effect of substrate composition on the piezoelectric response of reactively sputtered AlN thin films , 1999 .

[153]  Shunro Fuke,et al.  Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy , 2001 .

[154]  Long Lin,et al.  Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. , 2012, Nano letters.

[155]  Jaehwan Kim,et al.  A review of piezoelectric energy harvesting based on vibration , 2011 .

[156]  Paul Muralt,et al.  Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering , 2001 .

[157]  U. Schmid,et al.  AlScN thin film based surface acoustic wave devices with enhanced microfluidic performance , 2016 .

[158]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[159]  Bing Xiong,et al.  Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma , 2015 .

[160]  Chengjie Zuo,et al.  Super-high-frequency two-port AlN contour-mode resonators for RF applications , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[161]  E. S. Kim,et al.  Ultrahigh frequency ZnO silicon lens ultrasonic transducer for cell-size microparticle manipulation , 2017 .

[162]  P. Muralt,et al.  Thickness dependence of the properties of highly c-axis textured AlN thin films , 2004 .

[163]  Paul Muralt,et al.  Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications , 1999 .